Solveeit Logo

Question

Question: Value of \[\sum\limits_{K = 1}^{10} {\left( {\sin \left( {\dfrac{{2K\pi }}{{11}}} \right) + i\cos \l...

Value of K=110(sin(2Kπ11)+icos(2Kπ11))\sum\limits_{K = 1}^{10} {\left( {\sin \left( {\dfrac{{2K\pi }}{{11}}} \right) + i\cos \left( {\dfrac{{2K\pi }}{{11}}} \right)} \right)} is

Explanation

Solution

The given question refers to the concepts of summation and the complex number. To find the value of the given function, first take out ‘i’ common from the equation. Then by assuming cosθ+isinθ=eiθ\cos \theta + i\sin \theta = {e^{i\theta }}, we get an equation in the form of G.P. On solving it, we will get the required answer.
Formula Used Sn=a(1rn)1r{S_n} = a\dfrac{{\left( {1 - {r^n}} \right)}}{{1 - r}}

Complete step-by-step answer:
K=110(sin2Kπ11+icos2Kπ11)\sum\limits_{K = 1}^{10} {\left( {\sin \dfrac{{2K\pi }}{{11}} + i\cos \dfrac{{2K\pi }}{{11}}} \right)}
Take out ‘I’ common from the equation
K=110i(1isin2Kπ11+cos2Kπ11)\sum\limits_{K = 1}^{10} {i\left( {\dfrac{1}{i}\sin \dfrac{{2K\pi }}{{11}} + \cos \dfrac{{2K\pi }}{{11}}} \right)}
When we multiply and divide 1i\dfrac{1}{i} with i we get ii2\dfrac{i}{{{i^2}}}=i - i
Now we write as,
K=110\sum\limits_{K = 1}^{10} {} i(cos2Kπ11isin2Kπ11)i\left( {\cos \dfrac{{2K\pi }}{{11}} - i\sin \dfrac{{2K\pi }}{{11}}} \right) _(I)
\because z = cosθ+isinθ\cos \theta + i\sin \theta
\therefore z=eiθz = {e^{i\theta }}
Now, put the value of z in equation (I)
=K=110i.ei2Kπ11\sum\limits_{K = 1}^{10} i .{e^{ - i\dfrac{{2K\pi }}{{11}}}}
Let us assume ei2πr=r{e^{ - i\dfrac{{2\pi }}{r}}} = r, take i as a common
Then, iK=110rki\sum\limits_{K = 1}^{10} {{r^k}}
Now, the above equation is in the form of G.P.
The formula of G.P. is Sn=a(1rn)1r{S_n} = a\dfrac{{\left( {1 - {r^n}} \right)}}{{1 - r}}
=ir(1r10)1ri\dfrac{{r\left( {1 - {r^{10}}} \right)}}{{1 - r}}
i(rr11)1r\therefore i\dfrac{{\left( {r - {r^{11}}} \right)}}{{1 - r}} _(II)
We have assume r11{r^{11}}=(ei2π11)11{\left( {{e^{ - i\dfrac{{2\pi }}{{11}}}}} \right)^{11}}
=e2π= {e^{ - 2\pi }}
=cos2πisin2π= \cos 2\pi - i\sin 2\pi
cos2π=1\because \cos 2\pi = 1and sin2π\sin 2\pi =0
10\therefore 1 - 0 =1 = 1
Now, put the value of r11{r^{11}}in equation (II)
=i(r1)1r= i\dfrac{{\left( {r - 1} \right)}}{{1 - r}}
=i(1r)1r= - i\dfrac{{\left( {1 - r} \right)}}{{1 - r}}
=i= - i

Note: The value cosθ+isinθ\cos \theta + i\sin \theta is also written as eiθ{e^{i\theta }} which is called the Euler’s form of complex number. We can write it as eiθ{e^{i\theta }} because when we derive the function cosθ+isinθ\cos \theta + i\sin \theta then its answer will be found to be eiθ{e^{i\theta }}.