Question
Question: Value of positive real parameter 'a' such that the area of the region bounded by the parabolas y = x...
Value of positive real parameter 'a' such that the area of the region bounded by the parabolas y = x − ax2, ay = x2 attains it's maximum value, is equal to
A
1/2
B
2
C
1
D
None of these
Answer
1
Explanation
Solution
At point A, = x – ax2

⇒ x = 0, x = 1+a2a
Area bounded, Δ=∫0a/1+a2(x−ax2−ax2)dx
⇒dadΔ=∫0a/1+a2(−x2+a2x2)dx+0⋅dad(1+a2a)
=3a2(1−a2)x30a/1+a2=3(1+a2)3a(1−a2)
=(1+a2)3a(1−a)(1+a)
⇒ dadΔ > 0 ∀ a ∈ (0, 1) and dadΔ < 0 ∀ a ∈ (1, ∞)
Thus a = 1 is the point of maxima for ∆