Solveeit Logo

Question

Question: Value of positive real parameter 'a' such that the area of the region bounded by the parabolas y = x...

Value of positive real parameter 'a' such that the area of the region bounded by the parabolas y = x − ax2, ay = x2 attains it's maximum value, is equal to

A

1/2

B

2

C

1

D

None of these

Answer

1

Explanation

Solution

At point A, = x – ax2

⇒ x = 0, x = a1+a2\frac { a } { 1 + a ^ { 2 } }

Area bounded, Δ=0a/1+a2(xax2x2a)dx\Delta = \int _ { 0 } ^ { a / 1 + a ^ { 2 } } \left( x - a x ^ { 2 } - \frac { x ^ { 2 } } { a } \right) d x

dΔda=0a/1+a2(x2+x2a2)dx+0dda(a1+a2)\Rightarrow \frac { d \Delta } { d a } = \int _ { 0 } ^ { a / 1 + a ^ { 2 } } \left( - x ^ { 2 } + \frac { x ^ { 2 } } { a ^ { 2 } } \right) d x + 0 \cdot \frac { d } { d a } \left( \frac { a } { 1 + a ^ { 2 } } \right)

=(1a2)3a2x30a/1+a2=a(1a2)3(1+a2)3= \left. \frac { \left( 1 - a ^ { 2 } \right) } { 3 a ^ { 2 } } x ^ { 3 } \right| _ { 0 } ^ { a / 1 + a ^ { 2 } } = \frac { a \left( 1 - a ^ { 2 } \right) } { 3 \left( 1 + a ^ { 2 } \right) ^ { 3 } }

=a(1a)(1+a)(1+a2)3= \frac { a ( 1 - a ) ( 1 + a ) } { \left( 1 + a ^ { 2 } \right) ^ { 3 } }

dΔda\frac { d \Delta } { d a } > 0 ∀ a ∈ (0, 1) and dΔda\frac { \mathrm { d } \Delta } { \mathrm { da } } < 0 ∀ a ∈ (1, ∞)

Thus a = 1 is the point of maxima for