Solveeit Logo

Question

Mathematics Question on Exponential and Logarithmic Functions

Value of [(logba)(logcb)(logac)]\left[\left(\log_{b}\,a\right)\left(\log_{c}\,b\right)\left(\log_{a}\,c\right)\right] is

A

0

B

1

C

abc

D

log abc

Answer

1

Explanation

Solution

(logb\left(\log _{b}\right. a) (logcb)(logac)\left(\log _{c} b\right)\left(\log _{a} c\right) =logalogb×logblogc×logcloga[logmn=lognlogm]=\frac{\log a}{\log b} \times \frac{\log b}{\log c} \times \frac{\log c}{\log a}\left[\because \log _{m} n=\frac{\log n}{\log m}\right] =1=1