Solveeit Logo

Question

Mathematics Question on integral

Value of 0π/2sinxsinxcosx\int\limits_{0}^{\pi /2} \frac{\sqrt{sin x}}{\sqrt{sin x}\sqrt{cos x}} dx is

A

π2\frac{\pi}{2}

B

π2\frac{-\pi}{2}

C

π4\frac{\pi}{4}

D

None of these

Answer

π4\frac{\pi}{4}

Explanation

Solution

Let I= 0π/2sinxsinx+cosxdx(i)\int\limits_{0}^{\pi /2} \frac{\sqrt{sin x}}{\sqrt{sin x}+\sqrt{cos x}} dx \quad\ldots\left(i\right) Then,IThen, I = 0π/2sin(π/2x)sin(π/2x)+cos(π/2x)dx\int\limits_{0}^{\pi/ 2} \frac{\sqrt{sin \left(\pi /2 -x\right)}}{\sqrt{sin \left(\pi /2-x\right)}+\sqrt{cos \left(\pi /2-x\right)}} dx I=0π/2cosxcosx+sinxdx...(ii)\Rightarrow\quad I=\int\limits_{0}^{\pi /2} \frac{\sqrt{cos x}}{\sqrt{cos x}+\sqrt{sin x}} dx ...\left(ii\right) Adding (i) and (ii), we get 21 0π/2sinxcosx+sinxdx+0π/2cosxsinx+cosxdx\int\limits_{0}^{\pi /2} \frac{\sqrt{sin \, x}}{\sqrt{cos \,x}+\sqrt{sin\, x}} dx +\int\limits_{0}^{\pi/ 2} \frac{\sqrt{cos \, x}}{\sqrt{sin\,x}+\sqrt{cos\, x}}dx 0π/2sinx+cosxsinx+cosxdx=0π/21.dx=[x]0π/2=π20\int\limits_{0}^{\pi /2} \frac{\sqrt{sin\, x}+\sqrt{cos\, x}}{\sqrt{sin \, x}+\sqrt{cos \, x}} dx =\int\limits_{0}^{\pi /2} 1. d x =\left[x\right]_{0}^{\pi /2}=\frac{\pi}{2}-0 I=π40π/2sinxsinx+cosxdx=π4\Rightarrow\quad I=\frac{\pi}{4} \Rightarrow \int\limits_{0}^{\pi /2} \frac{\sqrt{sin \,x}}{\sqrt{sin \, x}+\sqrt{cos\, x}} dx=\frac{\pi}{4}