Solveeit Logo

Question

Question: Value of \(\int\limits_{0}^{\dfrac{\pi }{4}}{\ln \left( 1+\cos 4x \right)dx}\) is (a) \(\dfrac{\pi...

Value of 0π4ln(1+cos4x)dx\int\limits_{0}^{\dfrac{\pi }{4}}{\ln \left( 1+\cos 4x \right)dx} is
(a) π4ln2\dfrac{\pi }{4}\ln 2
(b) π4ln2-\dfrac{\pi }{4}\ln 2
(c) π2ln2-\dfrac{\pi }{2}\ln 2
(d) 0

Explanation

Solution

This is a problem of integration where we have to find the value of a given definite integral. So, we will start with taking the whole integration as I and will use different integration properties to get an easier form of the problem. Then logarithmic properties will be used to get ahead with the problem and get our solution.

Complete step by step solution:
According to the problem, we are to find the value of 0π4ln(1+cos4x)dx\int\limits_{0}^{\dfrac{\pi }{4}}{\ln \left( 1+\cos 4x \right)dx}
Now, we know from the integration identities, 0af(x)dx=0af(ax)dx\int\limits_{0}^{a}{f\left( x \right)dx}=\int\limits_{0}^{a}{f\left( a-x \right)dx}
So, let us consider, I = 0π4ln(1+cos4x)dx\int\limits_{0}^{\dfrac{\pi }{4}}{\ln \left( 1+\cos 4x \right)dx}……..[1]
Now, using this property, I=0π4ln(1+cos4(π4x))dxI=\int\limits_{0}^{\dfrac{\pi }{4}}{\ln \left( 1+\cos 4\left( \dfrac{\pi }{4}-x \right) \right)dx}
Simplifying, I=0π4ln(1+cos(π4x))dxI=\int\limits_{0}^{\dfrac{\pi }{4}}{\ln \left( 1+\cos \left( \pi -4x \right) \right)dx}
Again, we know, cos(πx)=cosx\cos \left( \pi -x \right)=-\cos x , as it is in the 2nd quadrant.
So, we are getting, I=0π4ln(1cos(4x))dxI=\int\limits_{0}^{\dfrac{\pi }{4}}{\ln \left( 1-\cos \left( 4x \right) \right)dx}…….[2]
Now, adding 1 and 2, we get,
2I=0π4ln(1+cos(4x))dx+0π4ln(1cos(4x))dx2I=\int\limits_{0}^{\dfrac{\pi }{4}}{\ln \left( 1+\cos \left( 4x \right) \right)dx}+\int\limits_{0}^{\dfrac{\pi }{4}}{\ln \left( 1-\cos \left( 4x \right) \right)dx}
Writing them together,
2I=0π4[ln(1+cos(4x))dx+ln(1cos(4x))dx]2I=\int\limits_{0}^{\dfrac{\pi }{4}}{\left[ \ln \left( 1+\cos \left( 4x \right) \right)dx+\ln \left( 1-\cos \left( 4x \right) \right)dx \right]}
And, lnm+lnp=lnmp\ln m+\ln p=\ln mp as the logarithmic formulas suggest.
Hence, we have,
2I=0π4[ln(1+cos(4x))(1cos(4x))dx]2I=\int\limits_{0}^{\dfrac{\pi }{4}}{\left[ \ln \left( 1+\cos \left( 4x \right) \right)\left( 1-\cos \left( 4x \right) \right)dx \right]}
Simplifying,
2I=0π4[ln(1cos2(4x))dx]2I=\int\limits_{0}^{\dfrac{\pi }{4}}{\left[ \ln \left( 1-{{\cos }^{2}}\left( 4x \right) \right)dx \right]}
Again, 1cos2x=sin2x1-{{\cos }^{2}}x={{\sin }^{2}}x gives us,
2I=0π4[ln(sin2(4x))dx]2I=\int\limits_{0}^{\dfrac{\pi }{4}}{\left[ \ln \left( {{\sin }^{2}}\left( 4x \right) \right)dx \right]}
Using, loga2=2loga\log {{a}^{2}}=2\log a we get,
2I=0π42ln(sin(4x))dx=20π4ln(sin(4x))dx2I=\int\limits_{0}^{\dfrac{\pi }{4}}{2\ln \left( \sin \left( 4x \right) \right)dx}=2\int\limits_{0}^{\dfrac{\pi }{4}}{\ln \left( \sin \left( 4x \right) \right)dx}
Cancelling 2 from both sides,
I=0π4ln(sin(4x))dxI=\int\limits_{0}^{\dfrac{\pi }{4}}{\ln \left( \sin \left( 4x \right) \right)dx}
Again,02af(x)dx=20af(ax)dx\int\limits_{0}^{2a}{f\left( x \right)dx}=2\int\limits_{0}^{a}{f\left( a-x \right)dx} if f(ax)=f(x)f\left( a-x \right)=f\left( x \right) .
Here, for f(x)=ln(sin4x)f\left( x \right)=\ln \left( \sin 4x \right) and f(π4x)=ln(sin4(π4x))=ln(sin(π4x))=ln(sin4x)f\left( \dfrac{\pi }{4}-x \right)=\ln \left( \sin 4\left( \dfrac{\pi }{4}-x \right) \right)=\ln \left( \sin \left( \pi -4x \right) \right)=\ln \left( \sin 4x \right)
So, I=20π8ln(sin(4x))dxI=2\int\limits_{0}^{\dfrac{\pi }{8}}{\ln \left( \sin \left( 4x \right) \right)dx}…….[3]
Again, 0af(x)dx=0af(ax)dx\int\limits_{0}^{a}{f\left( x \right)dx}=\int\limits_{0}^{a}{f\left( a-x \right)dx}
Thus, I=20π8ln(sin(4(π8x)))dxI=2\int\limits_{0}^{\dfrac{\pi }{8}}{\ln \left( \sin \left( 4\left( \dfrac{\pi }{8}-x \right) \right) \right)dx}
I=20π8ln(sin(π24x))dx=20π8ln(cos4x)dx\Rightarrow I=2\int\limits_{0}^{\dfrac{\pi }{8}}{\ln \left( \sin \left( \dfrac{\pi }{2}-4x \right) \right)dx}=2\int\limits_{0}^{\dfrac{\pi }{8}}{\ln \left( \cos 4x \right)dx}…..[4]
Adding 4 and 5,
2I=20π8(ln(sin(4x))+ln(cos(4x)))dx2I=2\int\limits_{0}^{\dfrac{\pi }{8}}{\left( \ln \left( \sin \left( 4x \right) \right)+\ln \left( \cos \left( 4x \right) \right) \right)dx}
Similarly, simplifying,
I=0π8(ln(sin(4x).cos(4x)))dxI=\int\limits_{0}^{\dfrac{\pi }{8}}{\left( \ln \left( \sin \left( 4x \right).\cos \left( 4x \right) \right) \right)dx}
Again,
I=0π8(ln(2sin(4x).cos(4x)2))dxI=\int\limits_{0}^{\dfrac{\pi }{8}}{\left( \ln \left( \dfrac{2\sin \left( 4x \right).\cos \left( 4x \right)}{2} \right) \right)dx}
Using trigonometric identities,
I=0π8(ln(sin(8x)2))dxI=\int\limits_{0}^{\dfrac{\pi }{8}}{\left( \ln \left( \dfrac{\sin \left( 8x \right)}{2} \right) \right)dx}
Now, again using the logarithmic identities, logalogb=logab\log a-\log b=\log \dfrac{a}{b} ,
We are getting, I=0π8(ln(sin8x)ln2)dxI=\int\limits_{0}^{\dfrac{\pi }{8}}{\left( \ln \left( \sin 8x \right)-\ln 2 \right)dx}
Writing them differently,
I=0π8ln(sin8x)dx0π8ln2dxI=\int\limits_{0}^{\dfrac{\pi }{8}}{\ln \left( \sin 8x \right)dx}-\int\limits_{0}^{\dfrac{\pi }{8}}{\ln 2dx}
Let us consider, I1=0π8ln(sin8x)dx{{I}_{1}}=\int\limits_{0}^{\dfrac{\pi }{8}}{\ln \left( \sin 8x \right)dx}
So, to integrate this we are using the substitution 8x=t8x=t , dx=18dt\Rightarrow dx=\dfrac{1}{8}dt
And the limits will be,
When x=0,t=0x=0,t=0 and x=π8,t=πx=\dfrac{\pi }{8},t=\pi
I1=0πln(sint)dt8{{I}_{1}}=\int\limits_{0}^{\pi }{\ln \left( \sin t \right)\dfrac{dt}{8}}
Simplifying,
I1=180πln(sint)dt=I2{{I}_{1}}=\dfrac{1}{8}\int\limits_{0}^{\pi }{\ln \left( \sin t \right)dt}=\dfrac{I}{2}
Hence, we have,
I=I10π8ln2dxI={{I}_{1}}-\int\limits_{0}^{\dfrac{\pi }{8}}{\ln 2dx}
I=I20π8ln2dx\Rightarrow I=\dfrac{I}{2}-\int\limits_{0}^{\dfrac{\pi }{8}}{\ln 2dx}
So,
I2=ln2[π80]\Rightarrow \dfrac{I}{2}=-\ln 2\left[ \dfrac{\pi }{8}-0 \right]
Thus, we can conclude,
I=π4ln2\Rightarrow I=-\dfrac{\pi }{4}\ln 2
So, 0π4ln(1+cos4x)dx=π4ln2\int\limits_{0}^{\dfrac{\pi }{4}}{\ln \left( 1+\cos 4x \right)dx}=-\dfrac{\pi }{4}\ln 2

So, the correct answer is “Option (b)”.

Note: This given problem is a very complicated one and to be dealt with very carefully. Some identities of integration like 0af(x)dx=0af(ax)dx\int\limits_{0}^{a}{f\left( x \right)dx}=\int\limits_{0}^{a}{f\left( a-x \right)dx}, is to be analyzed properly and then to be used. If the given function doesn’t satisfy the given conditions we can conclude that the property can not be used. Similarly for putting the value of limits and integration, we need to be extra cautious and find the proper solution.