Question
Question: Value of \(\int\limits_{0}^{\dfrac{\pi }{4}}{\ln \left( 1+\cos 4x \right)dx}\) is (a) \(\dfrac{\pi...
Value of 0∫4πln(1+cos4x)dx is
(a) 4πln2
(b) −4πln2
(c) −2πln2
(d) 0
Solution
This is a problem of integration where we have to find the value of a given definite integral. So, we will start with taking the whole integration as I and will use different integration properties to get an easier form of the problem. Then logarithmic properties will be used to get ahead with the problem and get our solution.
Complete step by step solution:
According to the problem, we are to find the value of 0∫4πln(1+cos4x)dx
Now, we know from the integration identities, 0∫af(x)dx=0∫af(a−x)dx
So, let us consider, I = 0∫4πln(1+cos4x)dx……..[1]
Now, using this property, I=0∫4πln(1+cos4(4π−x))dx
Simplifying, I=0∫4πln(1+cos(π−4x))dx
Again, we know, cos(π−x)=−cosx , as it is in the 2nd quadrant.
So, we are getting, I=0∫4πln(1−cos(4x))dx…….[2]
Now, adding 1 and 2, we get,
2I=0∫4πln(1+cos(4x))dx+0∫4πln(1−cos(4x))dx
Writing them together,
2I=0∫4π[ln(1+cos(4x))dx+ln(1−cos(4x))dx]
And, lnm+lnp=lnmp as the logarithmic formulas suggest.
Hence, we have,
2I=0∫4π[ln(1+cos(4x))(1−cos(4x))dx]
Simplifying,
2I=0∫4π[ln(1−cos2(4x))dx]
Again, 1−cos2x=sin2x gives us,
2I=0∫4π[ln(sin2(4x))dx]
Using, loga2=2loga we get,
2I=0∫4π2ln(sin(4x))dx=20∫4πln(sin(4x))dx
Cancelling 2 from both sides,
I=0∫4πln(sin(4x))dx
Again,0∫2af(x)dx=20∫af(a−x)dx if f(a−x)=f(x) .
Here, for f(x)=ln(sin4x) and f(4π−x)=ln(sin4(4π−x))=ln(sin(π−4x))=ln(sin4x)
So, I=20∫8πln(sin(4x))dx…….[3]
Again, 0∫af(x)dx=0∫af(a−x)dx
Thus, I=20∫8πln(sin(4(8π−x)))dx
⇒I=20∫8πln(sin(2π−4x))dx=20∫8πln(cos4x)dx…..[4]
Adding 4 and 5,
2I=20∫8π(ln(sin(4x))+ln(cos(4x)))dx
Similarly, simplifying,
I=0∫8π(ln(sin(4x).cos(4x)))dx
Again,
I=0∫8π(ln(22sin(4x).cos(4x)))dx
Using trigonometric identities,
I=0∫8π(ln(2sin(8x)))dx
Now, again using the logarithmic identities, loga−logb=logba ,
We are getting, I=0∫8π(ln(sin8x)−ln2)dx
Writing them differently,
I=0∫8πln(sin8x)dx−0∫8πln2dx
Let us consider, I1=0∫8πln(sin8x)dx
So, to integrate this we are using the substitution 8x=t , ⇒dx=81dt
And the limits will be,
When x=0,t=0 and x=8π,t=π
I1=0∫πln(sint)8dt
Simplifying,
I1=810∫πln(sint)dt=2I
Hence, we have,
I=I1−0∫8πln2dx
⇒I=2I−0∫8πln2dx
So,
⇒2I=−ln2[8π−0]
Thus, we can conclude,
⇒I=−4πln2
So, 0∫4πln(1+cos4x)dx=−4πln2
So, the correct answer is “Option (b)”.
Note: This given problem is a very complicated one and to be dealt with very carefully. Some identities of integration like 0∫af(x)dx=0∫af(a−x)dx, is to be analyzed properly and then to be used. If the given function doesn’t satisfy the given conditions we can conclude that the property can not be used. Similarly for putting the value of limits and integration, we need to be extra cautious and find the proper solution.