Solveeit Logo

Question

Question: Value of \(\int _ { 0 } ^ { \pi / 4 } \log\)(1 + tanx) dx =...

Value of 0π/4log\int _ { 0 } ^ { \pi / 4 } \log(1 + tanx) dx =

A

p

B

π24\frac { \pi ^ { 2 } } { 4 }

C

p log2

D

π8\frac { \pi } { 8 }log2

Answer

π8\frac { \pi } { 8 }log2

Explanation

Solution

I = 0π/4log\int _ { 0 } ^ { \pi / 4 } \log(1 + tanx) =

= 0π/4log\int _ { 0 } ^ { \pi / 4 } \logdx

=0π/4log2(1+tanx)\int _ { 0 } ^ { \pi / 4 } \log \frac { 2 } { ( 1 + \tan x ) }= 0π/4log2\int _ { 0 } ^ { \pi / 4 } \log ^ { 2 }0π/4log(1+tanx)\int _ { 0 } ^ { \pi / 4 } \log ( 1 + \tan x )

Ž 2 I =0π/4log2\int _ { 0 } ^ { \pi / 4 } \log 2.dx = log2[x]0π/4\log 2 [ \mathrm { x } ] _ { 0 } ^ { \pi / 4 }

Ž I = π8\frac { \pi } { 8 } log2