Question
Question: Value of \(\int _ { 0 } ^ { \pi / 4 } \log\)(1 + tanx) dx =...
Value of ∫0π/4log(1 + tanx) dx =
A
p
B
4π2
C
p log2
D
8πlog2
Answer
8πlog2
Explanation
Solution
I = ∫0π/4log(1 + tanx) =
= ∫0π/4logdx
=∫0π/4log(1+tanx)2= ∫0π/4log2– ∫0π/4log(1+tanx)
Ž 2 I =∫0π/4log2.dx = log2[x]0π/4
Ž I = 8π log2