Solveeit Logo

Question

Question: Value of I =\(\int_{0}^{\pi/2}\frac{\sin^{3}x\cos x}{\sin^{4}x + \cos^{4}x}\) dx is equal to...

Value of I =0π/2sin3xcosxsin4x+cos4x\int_{0}^{\pi/2}\frac{\sin^{3}x\cos x}{\sin^{4}x + \cos^{4}x} dx is equal to

A

p/8

B

p/4

C

p/2

D

p

Answer

p/4

Explanation

Solution

I =0π/2cos3xsinxsin4x+cos4x\int_{0}^{\pi/2}\frac{\cos^{3}x\sin x}{\sin^{4}x + \cos^{4}x}dx

Ž I + I =0π/2sinxcosxsin4x+cos4x\int_{0}^{\pi/2}\frac{\sin x\cos x}{\sin^{4}x + \cos^{4}x}dx

put sin2x = t