Solveeit Logo

Question

Mathematics Question on complex numbers

Value of k=16(2kπ7)icos(2kπ7)\displaystyle\sum_{ k =1}^{6}\left(\frac{2 k \pi}{7}\right)- i \cos \left(\frac{2 k \pi}{7}\right) is equal to.

A

-1

B

1

C

0

D

none of these

Answer

none of these

Explanation

Solution

x=k=16sin(2kπ7)icos(2kπ7)x =\displaystyle\sum_{ k =1}^{6} \sin \left(\frac{2 k \pi}{7}\right)- i \cos \left(\frac{2 k \pi}{7}\right) x=1ik=16isin(2kπ7)i2cos(2kπ7)x =\frac{1}{ i } \displaystyle\sum_{ k =1}^{6} i \sin \left(\frac{2 k \pi}{7}\right)- i ^{2} \cos \left(\frac{2 k \pi}{7}\right) x=1ik=16cos(2kπ7)+isin(2kπ7)x =\frac{1}{ i }\displaystyle \sum_{ k =1}^{6} \cos \left(\frac{2 k \pi}{7}\right)+ i \sin \left(\frac{2 k \pi}{7}\right) [i2=1]\left[\because i ^{2}=-1\right] Now, cosθ+isinθ=eiθ\cos \theta+i \sin \theta=e^{i \theta} x=1ik=16ei[2kπ7]\therefore x =\frac{1}{ i }\displaystyle \sum_{ k =1}^{6} e ^{ i }\left[\frac{2 k \pi}{7}\right] =1iei2kπ7[1+2+3+4+5+6]=\frac{1}{ i } e ^{ i } \frac{2 k \pi}{7}[1+2+3+4+5+6] =1iei2kπ7×21=\frac{1}{ i } e ^{ i } \frac{2 k \pi}{7} \times 21 =1iei6π=\frac{1}{ i } e ^{ i 6 \pi} =1i[cos6π+isin6π]=\frac{1}{ i }[\cos 6 \pi+ i \sin 6 \pi] =1i(1+0)=\frac{1}{ i }(1+0) =1i=1i×ii=\frac{1}{ i }=\frac{1}{ i } \times \frac{ i }{ i } =ii2=i=\frac{ i }{ i ^{2}}=- i