Solveeit Logo

Question

Question: Value of $\begin{vmatrix} a.a & a.b \\ a.b & b.b \end{vmatrix}$ is equal to...

Value of

a.aa.ba.bb.b\begin{vmatrix} a.a & a.b \\ a.b & b.b \end{vmatrix} is equal to

A

0

B

a2b2a^2b^2

C

(a×b)2(a \times b)^2

D

(ab)2(ab)^2

Answer

(a×b)2(a \times b)^2

Explanation

Solution

The determinant is given by

aaababbb=(aa)(bb)(ab)2.\begin{vmatrix} \mathbf{a}\cdot\mathbf{a} & \mathbf{a}\cdot\mathbf{b} \\ \mathbf{a}\cdot\mathbf{b} & \mathbf{b}\cdot\mathbf{b} \end{vmatrix} = (\mathbf{a}\cdot\mathbf{a})(\mathbf{b}\cdot\mathbf{b}) - (\mathbf{a}\cdot\mathbf{b})^2.

Recognize that

(a×b)2=a2b2(ab)2,(\mathbf{a} \times \mathbf{b})^2 = a^2b^2 - (\mathbf{a}\cdot\mathbf{b})^2,

where a2=aaa^2 = \mathbf{a}\cdot\mathbf{a} and b2=bbb^2 = \mathbf{b}\cdot\mathbf{b}. Thus, the determinant equals (a×b)2(\mathbf{a} \times \mathbf{b})^2.