Solveeit Logo

Question

Question: Value of $4 \cos \left[\frac{1}{2} \cos^{-1}(\frac{1}{8})\right]$ is...

Value of 4cos[12cos1(18)]4 \cos \left[\frac{1}{2} \cos^{-1}(\frac{1}{8})\right] is

A

3

B

-3

C

1

D

-1

Answer

3

Explanation

Solution

Let θ=cos1(18)\theta = \cos^{-1}(\frac{1}{8}). Then cosθ=18\cos \theta = \frac{1}{8}. Using the half-angle identity 2cos2(θ2)1=cosθ2 \cos^2(\frac{\theta}{2}) - 1 = \cos \theta, we get: 2cos2(θ2)1=182 \cos^2(\frac{\theta}{2}) - 1 = \frac{1}{8} 2cos2(θ2)=982 \cos^2(\frac{\theta}{2}) = \frac{9}{8} cos2(θ2)=916\cos^2(\frac{\theta}{2}) = \frac{9}{16} Since 0θπ0 \le \theta \le \pi, it follows that 0θ2π20 \le \frac{\theta}{2} \le \frac{\pi}{2}. In this interval, cos(θ2)\cos(\frac{\theta}{2}) is non-negative. Thus, cos(θ2)=916=34\cos(\frac{\theta}{2}) = \sqrt{\frac{9}{16}} = \frac{3}{4}. The required value is 4cos(θ2)=4×34=34 \cos(\frac{\theta}{2}) = 4 \times \frac{3}{4} = 3.