Solveeit Logo

Question

Question: Value of: $2log_62 + 3log_63 + log_612$ is...

Value of: 2log62+3log63+log6122log_62 + 3log_63 + log_612 is

A

2

B

3

C

11

D

10

Answer

4

Explanation

Solution

Let the given expression be EE.

E=2log62+3log63+log612E = 2log_62 + 3log_63 + log_612

We use the properties of logarithms:

  1. alogbx=logbxaa \log_b x = \log_b x^a
  2. logbx+logby=logb(xy)\log_b x + \log_b y = \log_b (xy)
  3. logbb=1\log_b b = 1

Apply property 1 to the first two terms:

2log62=log622=log642log_62 = log_6 2^2 = log_6 4

3log63=log633=log6273log_63 = log_6 3^3 = log_6 27

Substitute these back into the expression:

E=log64+log627+log612E = log_6 4 + log_6 27 + log_6 12

Apply property 2 to combine the terms:

E=log6(4×27×12)E = log_6 (4 \times 27 \times 12)

Calculate the product inside the logarithm:

4×27×12=108×12=12964 \times 27 \times 12 = 108 \times 12 = 1296

So the expression becomes:

E=log61296E = log_6 1296

Now we need to evaluate log61296log_6 1296. This means finding the power to which 6 must be raised to get 1296.

Let 6x=12966^x = 1296.

We can calculate the powers of 6:

61=66^1 = 6

62=366^2 = 36

63=2166^3 = 216

64=12966^4 = 1296

So, 64=12966^4 = 1296.

Therefore, log61296=4log_6 1296 = 4.