Solveeit Logo

Question

Question: $\int_{0}^{\infty} \frac{\ln x}{x^2 + kx + k^2} dx$, where k > 0....

0lnxx2+kx+k2dx\int_{0}^{\infty} \frac{\ln x}{x^2 + kx + k^2} dx, where k > 0.

Answer

2πlnk33k\frac{2\pi \ln k}{3\sqrt{3}k}

Explanation

Solution

The problem asks to evaluate the definite integral I=0lnxx2+kx+k2dxI = \int_{0}^{\infty} \frac{\ln x}{x^2 + kx + k^2} dx, where k>0k > 0.

Explanation of the Solution:

  1. Identify the general form and apply a known property: The integral is of the form 0lnxx2+ax+bdx\int_{0}^{\infty} \frac{\ln x}{x^2+ax+b} dx. A common property for such integrals states that if b>0b>0, then I=lnb201x2+ax+bdxI = \frac{\ln b}{2} \int_{0}^{\infty} \frac{1}{x^2+ax+b} dx. In our given integral, a=ka=k and b=k2b=k^2. Since k>0k>0, b=k2>0b=k^2>0. Applying the property: I=ln(k2)201x2+kx+k2dxI = \frac{\ln(k^2)}{2} \int_{0}^{\infty} \frac{1}{x^2 + kx + k^2} dx I=2lnk201x2+kx+k2dxI = \frac{2 \ln k}{2} \int_{0}^{\infty} \frac{1}{x^2 + kx + k^2} dx I=lnk01x2+kx+k2dxI = \ln k \int_{0}^{\infty} \frac{1}{x^2 + kx + k^2} dx

  2. Evaluate the remaining integral: We need to evaluate J=01x2+kx+k2dxJ = \int_{0}^{\infty} \frac{1}{x^2 + kx + k^2} dx. Complete the square in the denominator: x2+kx+k2=x2+kx+(k2)2(k2)2+k2x^2 + kx + k^2 = x^2 + kx + \left(\frac{k}{2}\right)^2 - \left(\frac{k}{2}\right)^2 + k^2 =(x+k2)2+k2k24= \left(x + \frac{k}{2}\right)^2 + k^2 - \frac{k^2}{4} =(x+k2)2+3k24= \left(x + \frac{k}{2}\right)^2 + \frac{3k^2}{4} =(x+k2)2+(3k2)2= \left(x + \frac{k}{2}\right)^2 + \left(\frac{\sqrt{3}k}{2}\right)^2

    Now, substitute u=x+k2u = x + \frac{k}{2}. Then du=dxdu = dx. The limits of integration change: When x=0x=0, u=0+k2=k2u = 0 + \frac{k}{2} = \frac{k}{2}. When x=x=\infty, u=+k2=u = \infty + \frac{k}{2} = \infty. So, the integral becomes: J=k/21u2+(3k2)2duJ = \int_{k/2}^{\infty} \frac{1}{u^2 + \left(\frac{\sqrt{3}k}{2}\right)^2} du

    This is a standard integral of the form 1y2+A2dy=1Aarctan(yA)\int \frac{1}{y^2+A^2} dy = \frac{1}{A} \arctan\left(\frac{y}{A}\right). Here, A=3k2A = \frac{\sqrt{3}k}{2}. J=[13k2arctan(u3k2)]k/2J = \left[ \frac{1}{\frac{\sqrt{3}k}{2}} \arctan\left(\frac{u}{\frac{\sqrt{3}k}{2}}\right) \right]_{k/2}^{\infty} J=23k[arctan(2u3k)]k/2J = \frac{2}{\sqrt{3}k} \left[ \arctan\left(\frac{2u}{\sqrt{3}k}\right) \right]_{k/2}^{\infty} J=23k(limuarctan(2u3k)arctan(2(k/2)3k))J = \frac{2}{\sqrt{3}k} \left( \lim_{u \to \infty} \arctan\left(\frac{2u}{\sqrt{3}k}\right) - \arctan\left(\frac{2(k/2)}{\sqrt{3}k}\right) \right) J=23k(arctan()arctan(k3k))J = \frac{2}{\sqrt{3}k} \left( \arctan(\infty) - \arctan\left(\frac{k}{\sqrt{3}k}\right) \right) J=23k(π2arctan(13))J = \frac{2}{\sqrt{3}k} \left( \frac{\pi}{2} - \arctan\left(\frac{1}{\sqrt{3}}\right) \right) J=23k(π2π6)J = \frac{2}{\sqrt{3}k} \left( \frac{\pi}{2} - \frac{\pi}{6} \right) J=23k(3ππ6)J = \frac{2}{\sqrt{3}k} \left( \frac{3\pi - \pi}{6} \right) J=23k(2π6)J = \frac{2}{\sqrt{3}k} \left( \frac{2\pi}{6} \right) J=23k(π3)J = \frac{2}{\sqrt{3}k} \left( \frac{\pi}{3} \right) J=2π33kJ = \frac{2\pi}{3\sqrt{3}k}

  3. Combine the results: Substitute the value of JJ back into the expression for II: I=lnkJI = \ln k \cdot J I=lnk2π33kI = \ln k \cdot \frac{2\pi}{3\sqrt{3}k} I=2πlnk33kI = \frac{2\pi \ln k}{3\sqrt{3}k}