Question
Question: $(1 + \sin^2x)^2 (1 + \cos^2x)^3$...
(1+sin2x)2(1+cos2x)3
The expression (1+sin2x)2(1+cos2x)3 has a minimum value of 4 and a maximum value of 312526244.
Solution
We wish to find the range (maximum and minimum values) of
E(x)=(1+sin2x)2(1+cos2x)3.Step 1. Express in a single variable
Since
sin2x+cos2x=1,let
t=sin2xso thatcos2x=1−t.Then
E(x)=f(t)=(1+t)2(1+(1−t))3=(1+t)2(2−t)3,t∈[0,1].Step 2. Find the endpoints
At t=0:
f(0)=(1+0)2(2−0)3=12⋅23=8.At t=1:
f(1)=(1+1)2(2−1)3=22⋅13=4.Step 3. Find the critical point
Differentiate f(t) using logarithmic differentiation:
lnf(t)=2ln(1+t)+3ln(2−t).Differentiate with respect to t:
f(t)f′(t)=1+t2−2−t3.Set f(t)f′(t)=0:
1+t2=2−t3⟹2(2−t)=3(1+t).Simplify:
4−2t=3+3t⟹4−3=3t+2t,1=5t,t=51.Step 4. Evaluate at the critical point
When t=51:
f(51)=(1+51)2(2−51)3.Compute:
1+51=56,2−51=59.Thus,
f(51)=(56)2(59)3=2536⋅125729=312536×729=312526244.Step 5. Determine the range
We found:
- At t=1, f(1)=4 (minimum).
- At t=0, f(0)=8.
- At t=51, f(51)=312526244≈8.3981 (maximum).
Thus, the expression attains its minimum value 4 and maximum value 312526244.
Core Explanation:
Substitute sin2x=t so that cos2x=1−t, getting f(t)=(1+t)2(2−t)3. Differentiate f(t) (or use the logarithmic derivative) to find the critical point t=51. Evaluate f(t) at t=0, t=1, and t=51 to obtain the range [4,312526244].