Solveeit Logo

Question

Question: $(1 + \sin^2x)^2 (1 + \cos^2x)^3$...

(1+sin2x)2(1+cos2x)3(1 + \sin^2x)^2 (1 + \cos^2x)^3

Answer

The expression (1+sin2x)2(1+cos2x)3(1+\sin^2x)^2 (1+\cos^2x)^3 has a minimum value of 44 and a maximum value of 262443125\frac{26244}{3125}.

Explanation

Solution

We wish to find the range (maximum and minimum values) of

E(x)=(1+sin2x)2(1+cos2x)3.E(x)=(1+\sin^2x)^2(1+\cos^2x)^3.

Step 1. Express in a single variable

Since

sin2x+cos2x=1,\sin^2x+\cos^2x=1,

let

t=sin2xso thatcos2x=1t.t=\sin^2x\quad \text{so that}\quad \cos^2x=1-t.

Then

E(x)=f(t)=(1+t)2(1+(1t))3=(1+t)2(2t)3,t[0,1].E(x)=f(t)=(1+t)^2\Bigl(1+(1-t)\Bigr)^3=(1+t)^2(2-t)^3,\quad t\in [0,1].

Step 2. Find the endpoints

At t=0t=0:

f(0)=(1+0)2(20)3=1223=8.f(0)=(1+0)^2(2-0)^3=1^2\cdot2^3=8.

At t=1t=1:

f(1)=(1+1)2(21)3=2213=4.f(1)=(1+1)^2(2-1)^3=2^2\cdot 1^3=4.

Step 3. Find the critical point

Differentiate f(t)f(t) using logarithmic differentiation:

lnf(t)=2ln(1+t)+3ln(2t).\ln f(t)=2\ln(1+t)+3\ln(2-t).

Differentiate with respect to tt:

f(t)f(t)=21+t32t.\frac{f'(t)}{f(t)}=\frac{2}{1+t} - \frac{3}{2-t}.

Set f(t)f(t)=0\frac{f'(t)}{f(t)}=0:

21+t=32t2(2t)=3(1+t).\frac{2}{1+t} = \frac{3}{2-t} \quad \Longrightarrow \quad 2(2-t)=3(1+t).

Simplify:

42t=3+3t43=3t+2t,1=5t,t=15.4-2t=3+3t\quad\Longrightarrow\quad 4-3=3t+2t,\quad 1=5t,\quad t=\frac{1}{5}.

Step 4. Evaluate at the critical point

When t=15t=\frac{1}{5}:

f(15)=(1+15)2(215)3.f\Bigl(\frac{1}{5}\Bigr)=\left(1+\frac{1}{5}\right)^2\left(2-\frac{1}{5}\right)^3.

Compute:

1+15=65,215=95.1+\frac{1}{5}=\frac{6}{5},\quad 2-\frac{1}{5}=\frac{9}{5}.

Thus,

f(15)=(65)2(95)3=3625729125=36×7293125=262443125.f\Bigl(\frac{1}{5}\Bigr)=\Bigl(\frac{6}{5}\Bigr)^2\Bigl(\frac{9}{5}\Bigr)^3 = \frac{36}{25}\cdot \frac{729}{125} =\frac{36\times729}{3125}=\frac{26244}{3125}.

Step 5. Determine the range

We found:

  • At t=1t=1, f(1)=4f(1)=4 (minimum).
  • At t=0t=0, f(0)=8f(0)=8.
  • At t=15t=\frac{1}{5}, f(15)=2624431258.3981f\Bigl(\frac{1}{5}\Bigr)=\frac{26244}{3125}\approx 8.3981 (maximum).

Thus, the expression attains its minimum value 44 and maximum value 262443125\frac{26244}{3125}.


Core Explanation:
Substitute sin2x=t\sin^2x=t so that cos2x=1t\cos^2x=1-t, getting f(t)=(1+t)2(2t)3f(t)=(1+t)^2(2-t)^3. Differentiate f(t)f(t) (or use the logarithmic derivative) to find the critical point t=15t=\frac{1}{5}. Evaluate f(t)f(t) at t=0t=0, t=1t=1, and t=15t=\frac{1}{5} to obtain the range [4,262443125][4,\frac{26244}{3125}].