Solveeit Logo

Question

Question: Using trapezoidal rule, by dividing the interval [0, 4] into 4 equal parts, the approximate value of...

Using trapezoidal rule, by dividing the interval [0, 4] into 4 equal parts, the approximate value of 04x2+1\int\limits_{0}^{4}{{{x}^{2}}+1} is equal to
(a) 25
(b) 26
(c) 27
(d) 28

Explanation

Solution

Hint: Divide the interval into 4 parts thus find the sub interval of width Δx\Delta x, Now use the trapezoidal rule formula for 4 equal parts. Substitute x = 0, 1, 2, 3, 4 in f (x) get the values and substitute in the formula.
Complete step-by-step solution -
Trapezoidal rule is used for approximating the definite integrals where it uses the linear approximations of the function. Let f (x) be a continuous function on the interval [a, b] which is [0, 4]. Now divide the intervals [0, 4] into n equal subintervals with each of width, Δx\Delta x i.e. n = 4.
Δx=ban=404=44=1\Delta x=\dfrac{b-a}{n}=\dfrac{4-0}{4}=\dfrac{4}{4}=1
Here, n = 4, as it is told to divide interval into 4 equal parts,
Here, f(x)=04x2+1dxf\left( x \right)=\int\limits_{0}^{4}{{{x}^{2}}+1}dx
Then the trapezoidal rule formula for area approximating the definite integral, abf(x)dx\int\limits_{a}^{b}{f\left( x \right)}dx is given by,
abf(x)dx=Δx2[f(x0)+2f(x1)+2f(x2)+.....+2f(xn1)+f(xn)]\int\limits_{a}^{b}{f\left( x \right)}dx=\dfrac{\Delta x}{2}\left[ f\left( {{x}_{0}} \right)+2f\left( {{x}_{1}} \right)+2f\left( {{x}_{2}} \right)+.....+2f\left( {{x}_{n-1}} \right)+f\left( {{x}_{n}} \right) \right] where, xi=a+iΔx{{x}_{i}}=a+i\Delta x.
04(x2+1)dx=Δx2[f(x0)+2f(x1)+2f(x2)+2f(x3)+f(x4)]\int\limits_{0}^{4}{\left( {{x}^{2}}+1 \right)dx}=\dfrac{\Delta x}{2}\left[ f\left( {{x}_{0}} \right)+2f\left( {{x}_{1}} \right)+2f\left( {{x}_{2}} \right)+2f\left( {{x}_{3}} \right)+f\left( {{x}_{4}} \right) \right] ...........(1)
Now let us find the values of f(x0),f(x1),f(x2),f(x3)f\left( {{x}_{0}} \right),f\left( {{x}_{1}} \right),f\left( {{x}_{2}} \right),f\left( {{x}_{3}} \right) and f(x4)f\left( {{x}_{4}} \right), when x = 0,1,2,3,4 f(x0)=f(0)=x2+1=0+1=1f\left( {{x}_{0}} \right)=f\left( 0 \right)={{x}^{2}}+1=0+1=1.

& f\left( {{x}_{1}} \right)=f\left( 1 \right)={{x}^{2}}+1={{1}^{2}}+1=2 \\\ & f\left( {{x}_{2}} \right)=f\left( 2 \right)={{2}^{2}}+1=4+1=5 \\\ & f\left( {{x}_{3}} \right)=f\left( 3 \right)={{3}^{2}}+1=9+1=10 \\\ & f\left( {{x}_{4}} \right)=f\left( 4 \right)={{4}^{2}}+1=16+1=17 \\\ \end{aligned}$$ Thus we got $$f\left( {{x}_{0}} \right)=1,f\left( {{x}_{1}} \right)=2,f\left( {{x}_{2}} \right)=5,f\left( {{x}_{3}} \right)=10$$ and $$f\left( {{x}_{4}} \right)=17,\Delta x=1$$. Now let us substitute these values in equation (1). $$\begin{aligned} & \int\limits_{0}^{4}{\left( {{x}^{2}}+1 \right)dx}=\dfrac{\Delta x}{2}\left[ f\left( {{x}_{0}} \right)+2f\left( {{x}_{1}} \right)+2f\left( {{x}_{2}} \right)+2f\left( {{x}_{3}} \right)+f\left( {{x}_{4}} \right) \right] \\\ & \int\limits_{0}^{4}{\left( {{x}^{2}}+1 \right)dx}=\dfrac{1}{2}\left[ 1+\left( 2\times 2 \right)+\left( 2\times 5 \right)+\left( 2\times 10 \right)+17 \right] \\\ & \int\limits_{0}^{4}{\left( {{x}^{2}}+1 \right)dx}=\dfrac{1}{2}\left[ 1+4+10+20+17 \right] \\\ & \int\limits_{0}^{4}{\left( {{x}^{2}}+1 \right)dx}=\dfrac{1}{2}\times 52=26 \\\ \end{aligned}$$ Thus by dividing the interval [0, 4] into 4equal parts, the approximate value $$\int\limits_{0}^{4}{\left( {{x}^{2}}+1 \right)dx}=26$$. $$\therefore $$ Option (b) is the correct answer. Note: Trapezoidal rule integration works by approximating the region under the graph of a function as a trapezoid and calculating the area. If we compare trapezoidal rule to Simpson’s rule, trapezoidal rule doesn’t give accurate value, it is because trapezoidal rule uses linear approximations.