Solveeit Logo

Question

Question: Using the trigonometric identity for the tangent of sum of two angles, prove that \(\dfrac{\cos \l...

Using the trigonometric identity for the tangent of sum of two angles, prove that
cos(8)sin(8)cos(8)+sin(8)=tan(37)\dfrac{\cos \left( {{8}^{\circ }} \right)-\sin \left( {{8}^{\circ }} \right)}{\cos \left( {{8}^{\circ }} \right)+\sin \left( {{8}^{\circ }} \right)}=\tan ({{37}^{\circ }})

Explanation

Solution

Hint: In this question, the LHS has the terms consisting of cosine and sine terms and the RHS consists of a tangent term. Therefore, we should try to convert both sides in terms of tan and then use the formula for tangent of difference of two angles to obtain the required answer.

Complete step-by-step answer:
In this equation, we should try to convert both sides in terms of the same trigonometric ratio i.e. tan. Therefore, we should use the definition of tan in terms of sin and cos which is
tan(θ)=sin(θ)cos(θ)..................(1.1)\tan \left( \theta \right)=\dfrac{\sin \left( \theta \right)}{\cos \left( \theta \right)}..................(1.1)
Therefore as cos(8)0\cos ({{8}^{\circ }})\ne 0 , we can divide both numerator and denominator of LHS by cos(8)\cos ({{8}^{\circ }}) and use equation (1.1) to obtain
cos(8)sin(8)cos(8)+sin(8)=cos(8)cos(8)sin(8)cos(8)cos(8)cos(8)+sin(8)cos(8)=1tan(8)1+tan(8)..........(1.2)\dfrac{\cos \left( {{8}^{\circ }} \right)-\sin \left( {{8}^{\circ }} \right)}{\cos \left( {{8}^{\circ }} \right)+\sin \left( {{8}^{\circ }} \right)}=\dfrac{\dfrac{\cos \left( {{8}^{\circ }} \right)}{\cos \left( {{8}^{\circ }} \right)}-\dfrac{\sin \left( {{8}^{\circ }} \right)}{\cos \left( {{8}^{\circ }} \right)}}{\dfrac{\cos \left( {{8}^{\circ }} \right)}{\cos \left( {{8}^{\circ }} \right)}+\dfrac{\sin \left( {{8}^{\circ }} \right)}{\cos \left( {{8}^{\circ }} \right)}}=\dfrac{1-\tan \left( {{8}^{\circ }} \right)}{1+\tan \left( {{8}^{\circ }} \right)}..........(1.2)
As the tangent of 45{{45}^{\circ }} is given by tan(45)=1\tan ({{45}^{\circ }})=1. Therefore, replacing 1 in equation (1.2) by tan(45)\tan ({{45}^{\circ }}) to obtain
cos(8)sin(8)cos(8)+sin(8)=1tan(8)1+tan(8)=tan(45)tan(8)1+tan(45)tan(8)..........(1.3)\dfrac{\cos \left( {{8}^{\circ }} \right)-\sin \left( {{8}^{\circ }} \right)}{\cos \left( {{8}^{\circ }} \right)+\sin \left( {{8}^{\circ }} \right)}=\dfrac{1-\tan \left( {{8}^{\circ }} \right)}{1+\tan \left( {{8}^{\circ }} \right)}=\dfrac{\tan \left( {{45}^{\circ }} \right)-\tan \left( {{8}^{\circ }} \right)}{1+\tan \left( {{45}^{\circ }} \right)\tan \left( {{8}^{\circ }} \right)}..........(1.3)
Now, the tangent of a difference of two angles is given by
tan(ab)=tan(a)tan(b)1+tan(a)tan(b)...........(1.4)\tan (a-b)=\dfrac{\tan (a)-\tan (b)}{1+\tan (a)\tan (b)}...........(1.4)
Therefore, taking a=45a={{45}^{\circ }} and b=8b={{8}^{\circ }} in equation (1.4), we obtain
tan(458)=tan(45)tan(8)1+tan(45)tan(8)...........(1.5)\tan ({{45}^{\circ }}-{{8}^{\circ }})=\dfrac{\tan ({{45}^{\circ }})-\tan ({{8}^{\circ }})}{1+\tan ({{45}^{\circ }})\tan ({{8}^{\circ }})}...........(1.5)
Thus, by using equation (1.3) and (1.5), we can write the equation as
cos(8)sin(8)cos(8)+sin(8)=tan(45)tan(8)1+tan(45)tan(8)=tan(458)=tan(37)........(1.6)\dfrac{\cos \left( {{8}^{\circ }} \right)-\sin \left( {{8}^{\circ }} \right)}{\cos \left( {{8}^{\circ }} \right)+\sin \left( {{8}^{\circ }} \right)}=\dfrac{\tan \left( {{45}^{\circ }} \right)-\tan \left( {{8}^{\circ }} \right)}{1+\tan \left( {{45}^{\circ }} \right)\tan \left( {{8}^{\circ }} \right)}=\tan \left( {{45}^{\circ }}-{{8}^{\circ }} \right)=\tan ({{37}^{\circ }})........(1.6)

Thus, from equation (1.6), we get
cos(8)sin(8)cos(8)+sin(8)=tan(37)\dfrac{\cos \left( {{8}^{\circ }} \right)-\sin \left( {{8}^{\circ }} \right)}{\cos \left( {{8}^{\circ }} \right)+\sin \left( {{8}^{\circ }} \right)}=\tan ({{37}^{\circ }})
Which is exactly what we wanted to prove.

Note: We should note that when we divide cos(8)\cos ({{8}^{\circ }}) it is necessary to state that it is not equal to zero as otherwise the resulting equation will not be valid as division by zero is undefined.