Solveeit Logo

Question

Mathematics Question on Determinants

Using the property of determinants and without expanding,prove that:b+cq+ry+z c+ar+pz+x a+bp+qx+y\begin{vmatrix} b+c & q+r & y+z\\\ c+a & r+p & z+x\\\ a+b&p+q&x+y \end{vmatrix}=2\begin{vmatrix} a & p & x\\\ b & q & y\\\c&r&z \end{vmatrix}

Answer

△=b+cq+ry+z c+ar+pz+x a+bp+qx+y\begin{vmatrix} b+c & q+r & y+z\\\ c+a & r+p & z+x\\\ a+b&p+q&x+y \end{vmatrix}

=b+cq+ry+z c+ar+pz+x apx\begin{vmatrix} b+c & q+r & y+z\\\ c+a & r+p & z+x\\\ a&p&x \end{vmatrix}+b+cq+ry+z c+ar+pz+x bqy\begin{vmatrix} b+c & q+r & y+z\\\ c+a & r+p & z+x\\\ b&q&y \end{vmatrix}
=△1+△2(say) ....(1)
Now △1= b+cq+ry+z c+ar+pz+x apx\begin{vmatrix} b+c & q+r & y+z\\\ c+a & r+p & z+x\\\ a&p&x \end{vmatrix}
Applying R2 → R2 − R3, we have:
△1=b+cq+ry+z crz apx\begin{vmatrix} b+c & q+r & y+z\\\ c & r & z\\\ a&p&x \end{vmatrix}
Applying R1 → R1 − R2, we have:

△1=bqy crz apx\begin{vmatrix} b & q & y\\\ c & r & z\\\ a&p&x \end{vmatrix}

Applying R1 ↔R3 and R2 ↔R3, we have:

△1=(-1)2\begin{vmatrix}a&p&x\\\b&q&y\\\c&r&z\end{vmatrix}=\begin{vmatrix}a&p&x\\\b&q&y\\\c&r&z\end{vmatrix} ….....(2)

△2=b+cq+ry+z c+ar+pz+x bqy\begin{vmatrix} b+c & q+r & y+z\\\ c+a & r+p & z+x\\\ b&q&y \end{vmatrix}

Applying R1 → R1 − R3, we have:

△2=crz c+ar+pz+x bqy\begin{vmatrix} c & r & z\\\ c+a & r+p & z+x\\\ b&q&y \end{vmatrix}

Applying R2 → R2 − R1, we have:

△2=crz apx bqy\begin{vmatrix} c & r & z\\\ a & p & x\\\ b&q&y \end{vmatrix}

Applying R1 ↔R2 and R2 ↔R3, we have:

△2=(-1)2apx bqy crz\begin{vmatrix} a & p& x\\\ b & q & y\\\ c&r&z \end{vmatrix}= apx bqy crz\begin{vmatrix} a & p& x\\\ b & q & y\\\ c&r&z \end{vmatrix} ...(3)

From (1), (2), and (3), we have:

△=2apx bqy crz\begin{vmatrix} a & p& x\\\ b & q & y\\\ c&r&z \end{vmatrix} Hence, the given result is proved.