Question
Mathematics Question on Determinants
Using the property of determinants and without expanding,prove that:b+c c+a a+bq+rr+pp+qy+zz+xx+y=2\begin{vmatrix} a & p & x\\\ b & q & y\\\c&r&z \end{vmatrix}
△=b+c c+a a+bq+rr+pp+qy+zz+xx+y
=b+c c+a aq+rr+ppy+zz+xx+b+c c+a bq+rr+pqy+zz+xy
=△1+△2(say) ....(1)
Now △1= b+c c+a aq+rr+ppy+zz+xx
Applying R2 → R2 − R3, we have:
△1=b+c c aq+rrpy+zzx
Applying R1 → R1 − R2, we have:
△1=b c aqrpyzx
Applying R1 ↔R3 and R2 ↔R3, we have:
△1=(-1)2\begin{vmatrix}a&p&x\\\b&q&y\\\c&r&z\end{vmatrix}=\begin{vmatrix}a&p&x\\\b&q&y\\\c&r&z\end{vmatrix} ….....(2)
△2=b+c c+a bq+rr+pqy+zz+xy
Applying R1 → R1 − R3, we have:
△2=c c+a brr+pqzz+xy
Applying R2 → R2 − R1, we have:
△2=c a brpqzxy
Applying R1 ↔R2 and R2 ↔R3, we have:
△2=(-1)2a b cpqrxyz= a b cpqrxyz ...(3)
From (1), (2), and (3), we have:
△=2a b cpqrxyz Hence, the given result is proved.