Solveeit Logo

Question

Mathematics Question on Determinants

Using the property of determinants and without expanding, prove that: 1bca(b+c)\1cab(c+a)\1abc(a+b)\begin{vmatrix}1&bc&a(b+c)\\\1&ca&b(c+a)\\\1&ab&c(a+b)\end{vmatrix}=0

Answer

=1bca(b+c)\1cab(c+a)\1abc(a+b)\triangle=\begin{vmatrix}1&bc&a(b+c)\\\1&ca&b(c+a)\\\1&ab&c(a+b)\end{vmatrix}

By applying C3 \to C3 + C2, we have:
=1bcab+bc+ca\1caab+bc+ca\1abab+bc+ca\triangle=\begin{vmatrix}1&bc&ab+bc+ca\\\1&ca&ab+bc+ca\\\1&ab&ab+bc+ca\end{vmatrix}
Here, two columns C1 and C3 are proportional.
∆ = 0.