Solveeit Logo

Question

Mathematics Question on Determinants

Using the property of determinants and without expanding, prove that: abbcca\bccaab¸aabbc\begin{vmatrix}a-b&b-c&c-a\\\b-c&c-a&a-b\\\c-a&a-b&b-c\end{vmatrix}=0

Answer

\triangle= abbcca\bccaab¸aabbc\begin{vmatrix}a-b&b-c&c-a\\\b-c&c-a&a-b\\\c-a&a-b&b-c\end{vmatrix}

Applying R1\to R1+R2,we have

\triangle= acbacb\bccaab(ac)(ba)(cb)\begin{vmatrix}a-c&b-a&c-b\\\b-c&c-a&a-b\\\\-(a-c)&-(b-a)&-(c-b)\end{vmatrix}

= -\begin{vmatrix}a-c&b-a&c-b\\\b-c&c-a&a-b\\\(a-c)&(b-a)&(c-b)\end{vmatrix}

Here, the two rows R1 and R3 are identical.
\triangle = 0.