Question
Mathematics Question on Determinants
Using the property of determinants and without expanding, prove that: a−b\b−c−¸ab−cc−aa−bc−aa−bb−c=0
Answer
△= a−b\b−c−¸ab−cc−aa−bc−aa−bb−c
Applying R1→ R1+R2,we have
△= a−c\b−c−(a−c)b−ac−a−(b−a)c−ba−b−(c−b)
= -\begin{vmatrix}a-c&b-a&c-b\\\b-c&c-a&a-b\\\(a-c)&(b-a)&(c-b)\end{vmatrix}
Here, the two rows R1 and R3 are identical.
△ = 0.