Solveeit Logo

Question

Mathematics Question on Determinants

Using the property of determinants and without expanding, prove that: xax+a\yby+b\zCz+c=0\begin{vmatrix}x&a&x+a\\\y&b&y+b\\\z&C&z+c\end{vmatrix}=0

Answer

xax+a\yby+b\zCz+c\begin{vmatrix}x&a&x+a\\\y&b&y+b\\\z&C&z+c\end{vmatrix}

=xax\yby\zcz+xaa\ybb\zcc=0+0=0\begin{vmatrix}x&a&x\\\y&b&y\\\z&c&z\end{vmatrix}+\begin{vmatrix}x&a&a\\\y&b&b\\\z&c&c\end{vmatrix}=0+0=0

[Here the two columns of the determinants are identical]