Solveeit Logo

Question

Question: Using the properties of the determinants prove the following expression. \(\left| \begin{matrix} ...

Using the properties of the determinants prove the following expression.
1xx2 x21x xx21 =(1x3)2.\left| \begin{matrix} 1 & x & {{x}^{2}} \\\ {{x}^{2}} & 1 & x \\\ x & {{x}^{2}} & 1 \\\ \end{matrix} \right|={{\left( 1-{{x}^{3}} \right)}^{2}}.

Explanation

Solution

To prove the following expression we will take the LHS of the expression and apply properties of the determinant to prove it equal to the RHS of the expression. First, we will apply R1R1+R2+R3{{R}_{1}}\to {{R}_{1}}+{{R}_{2}}+{{R}_{3}}. After that we will apply C1C1C2{{C}_{1}}\to {{C}_{1}}-{{C}_{2}} and then C2C2C3{{C}_{2}}\to {{C}_{2}}-{{C}_{3}} and after that we will expand the matrix to solve it.

Complete step by step answer:
We can observe that if we add values of row 2 and row 3 to row 1 we will be able to take 1+x2+x1+{{x}^{2}}+x common out of row 1, so applying R1R1+R2+R3{{R}_{1}}\to {{R}_{1}}+{{R}_{2}}+{{R}_{3}}, we get
1xx2 x21x xx21  =1+x2+xx+1+x2x2+x+1 x21x xx21  \begin{aligned} & \left| \begin{matrix} 1 & x & {{x}^{2}} \\\ {{x}^{2}} & 1 & x \\\ x & {{x}^{2}} & 1 \\\ \end{matrix} \right| \\\ & =\left| \begin{matrix} 1+{{x}^{2}}+x & x+1+{{x}^{2}} & {{x}^{2}}+x+1 \\\ {{x}^{2}} & 1 & x \\\ x & {{x}^{2}} & 1 \\\ \end{matrix} \right| \\\ \end{aligned}
Now taking 1+x2+x1+{{x}^{2}}+x common from row 1, we get
=(1+x+x2)111 x21x xx21 =\left( 1+x+{{x}^{2}} \right)\left| \begin{matrix} 1 & 1 & 1 \\\ {{x}^{2}} & 1 & x \\\ x & {{x}^{2}} & 1 \\\ \end{matrix} \right|
Now, applying C1C1C2{{C}_{1}}\to {{C}_{1}}-{{C}_{2}}, we get
=(1+x+x2)1111 x211x xx2x21  =(1+x+x2)011 x211x x(1x)x21  \begin{aligned} & =\left( 1+x+{{x}^{2}} \right)\left| \begin{matrix} 1-1 & 1 & 1 \\\ {{x}^{2}}-1 & 1 & x \\\ x-{{x}^{2}} & {{x}^{2}} & 1 \\\ \end{matrix} \right| \\\ & =\left( 1+x+{{x}^{2}} \right)\left| \begin{matrix} 0 & 1 & 1 \\\ {{x}^{2}}-1 & 1 & x \\\ x\left( 1-x \right) & {{x}^{2}} & 1 \\\ \end{matrix} \right| \\\ \end{aligned}
Using the property a2b2=(a+b)(ab){{a}^{2}}-{{b}^{2}}=\left( a+b \right)\left( a-b \right) in second row and 1st column, we get
=(1+x+x2)011 (x1)(x+1)1x x(x1)x21 =\left( 1+x+{{x}^{2}} \right)\left| \begin{matrix} 0 & 1 & 1 \\\ \left( x-1 \right)\left( x+1 \right) & 1 & x \\\ -x\left( x-1 \right) & {{x}^{2}} & 1 \\\ \end{matrix} \right|
Taking x1x-1 common from column 1, we get
=(1+x+x2)(x1)011 (x+1)1x xx21 =\left( 1+x+{{x}^{2}} \right)\left( x-1 \right)\left| \begin{matrix} 0 & 1 & 1 \\\ \left( x+1 \right) & 1 & x \\\ -x & {{x}^{2}} & 1 \\\ \end{matrix} \right|
Now applying C2C2C3{{C}_{2}}\to {{C}_{2}}-{{C}_{3}}, and also using the property a2b2=(a+b)(ab){{a}^{2}}-{{b}^{2}}=\left( a+b \right)\left( a-b \right) in third row and 2nd column, we get

=(1+x+x2)(x1)0111 (x+1)1xx xx211  =(1+x+x2)(x1)001 (x+1)(x1)x x(x+1)(x1)1  \begin{aligned} & =\left( 1+x+{{x}^{2}} \right)\left( x-1 \right)\left| \begin{matrix} 0 & 1-1 & 1 \\\ \left( x+1 \right) & 1-x & x \\\ -x & {{x}^{2}}-1 & 1 \\\ \end{matrix} \right| \\\ & =\left( 1+x+{{x}^{2}} \right)\left( x-1 \right)\left| \begin{matrix} 0 & 0 & 1 \\\ \left( x+1 \right) & -\left( x-1 \right) & x \\\ -x & \left( x+1 \right)\left( x-1 \right) & 1 \\\ \end{matrix} \right| \\\ \end{aligned}
Now, we will take x1x-1 common from column 2,
=(1+x+x2)(x1)2001 (x+1)1x x(x+1)1 =\left( 1+x+{{x}^{2}} \right){{\left( x-1 \right)}^{2}}\left| \begin{matrix} 0 & 0 & 1 \\\ \left( x+1 \right) & -1 & x \\\ -x & \left( x+1 \right) & 1 \\\ \end{matrix} \right|
Now we will expand the determinant along row 1, and we will get,

& =\left( 1+x+{{x}^{2}} \right){{\left( x-1 \right)}^{2}}\times \left[ 0+0+1\times \left( {{\left( x+1 \right)}^{2}}-x \right) \right] \\\ & =\left( 1+x+{{x}^{2}} \right){{\left( x-1 \right)}^{2}}\times \left( {{\left( x+1 \right)}^{2}}-x \right) \\\ & =\left( 1+x+{{x}^{2}} \right){{\left( x-1 \right)}^{2}}\times \left( \left( {{x}^{2}}+1+2x \right)-x \right) \\\ & =\left( 1+x+{{x}^{2}} \right){{\left( x-1 \right)}^{2}}\times \left( 1+x+{{x}^{2}} \right) \\\ & ={{\left( 1+x+{{x}^{2}} \right)}^{2}}{{\left( x-1 \right)}^{2}} \\\ & ={{\left( \left( 1+x+{{x}^{2}} \right)\left( x-1 \right) \right)}^{2}} \\\ & ={{\left( -\left( 1-x \right)\left( 1+x+{{x}^{2}} \right) \right)}^{2}} \\\ \end{aligned}$$ As we know square of negative symbol is positive only so we get, $$={{\left( \left( 1-x \right)\left( 1+x+{{x}^{2}} \right) \right)}^{2}}$$ And we know that ${{a}^{3}}-{{b}^{3}}=\left( a-b \right)\left( {{a}^{2}}+{{b}^{2}}+ab \right)$, in the above expression taking a = 1, and b = $x$, we get, $\begin{aligned} & ={{\left( {{1}^{3}}-{{x}^{3}} \right)}^{2}} \\\ & ={{\left( 1-{{x}^{3}} \right)}^{2}} \\\ \end{aligned}$ = R. H. S Hence we proved LHS is equal to the RHS by using the properties of the determinants. **Note:** You need to note that this question can be solved by the number of ways and the above shown method is one of the ways. Whenever you are trying to solve questions related to determinant try to analyse what result will we get after applying that property if the result is useful then only apply that property otherwise don’t.