Question
Question: Using the properties determinants show that \[\left| \left. \begin{matrix} b+c & a & a \\\ ...
Using the properties determinants show that b+c b c ac+acaba+b=4abc
Solution
Use row operations or column operation of determinants to eliminate (conversion to zero) as many as elements of a row or a column respectively of the given determinant and then calculate the value of the determinant using the conventional multiplication by row or a column.
Complete step by step answer:
We know that from the property of determinants that if multiple of a row is subtracted from another row then the values of the determinant does not change. Mathematically, if the determinant constitutes has mth and nthrow denoted as Rm and Rn respectively, then by row operation, Rm ←Rm−kRn where k is an integer.
Similarly if multiple of a column is subtracted from another column then the values of the determinant does not change. Mathematically, if the determinant constitutes has $\text{m}^{th}$ and $n^{th}$ row denoted as ${{C}_{m}}\text{ and }{{C}_{n}}$ respectively, then by row operation, ${{C}_{m}}\text{ }\leftarrow {{C}_{m}}-k{{C}_{n}}$ where $k$ is an integer.
We are only going to use the row operation here.
Let the given determinant denoted by $\Delta $ which consists of three rows${{R}_{1}},{{R}_{2}},{{R}_{3}}$.
At the Left Hand Side,