Solveeit Logo

Question

Physics Question on Units and measurement

Using the principle of homogeneity of dimensions, which of the following is correct ?

A

T2=4π2r3GMT^{2}=\frac{4\pi^{2}r^{3}}{GM}

B

T2=4π2r2T^{2}=4\pi^{2}r^{2}

C

T2=4π2r3GT^{2}=\frac{4\pi^{2}r^{3}}{G}

D

T=4π2r3GT=\frac{4\pi^{2}r^{3}}{G}

Answer

T2=4π2r3GMT^{2}=\frac{4\pi^{2}r^{3}}{GM}

Explanation

Solution

T2=4π2r3GMT^{2}=\frac{4\pi^{2}r^{3}}{GM} Taking dimensions on both sides, we get [T]2=[L]3[M1L3T2M]=[M0L0T2]\left[T\right]^{2}=\frac{\left[L\right]^{3}}{\left[M^{-1}L^{3}T^{-2}M\right]}=\left[M^{0}L^{0}T^{2}\right] LHS=RHS\therefore LHS=RHS Now, T2=4π2r2T^{2}=4\pi^{2}r^{2} Taking dimensions on both sides [T]2=[L2]\left[T\right]^{2}=\left[L^{2}\right] LHSRHS\therefore LHS \ne RHS Now, T2=4π2r3GT^{2}=\frac{4\pi^{2}r^{3}}{G} Taking dimensions on both sides [T]2=[L]3[M1L3T2]=[M1L0T2]\left[T\right]^{2}=\frac{\left[L\right]^{3}}{\left[M^{-1}L^{3}T^{-2}\right]}=\left[M^{1}L^{0}T^{2}\right] LHSRHS\therefore LHS \ne RHS Now, T=4π2r3GT=\frac{4\pi^{2}r^{3}}{G} [T]=[L3][M1L3T2]=[ML0T2]\left[T\right]=\frac{\left[L^{3}\right]}{\left[M^{-1}L^{3}T^{-2}\right]}=\left[ML^{0}T^{2}\right] LHSRHS\therefore LHS \ne RHS.