Solveeit Logo

Question

Mathematics Question on applications of integrals

Using the method of integration find the area of the region bounded by lines:
2x+y=4,3x2y=62x+y=4,3x–2y=6 and x3y+5=0x–3y+5=0

Answer

The correct answer is:72units\frac{7}{2}units
The given equations of lines are
2x+y=4(1)2x+y=4…(1)
3x2y=6(2)3x–2y=6…(2)
And,x3y+5=0(3)x–3y+5=0…(3)
Integrals
The area of the region bounded by the lines is the area of ABC∆ABC.AL and CM are the
perpendiculars on xaxis.x-axis.
Area(∆ABC)=Area(ALMCA)–Area(ALB)–Area(CMB)
=14(x+53)dx12(42x)dx24(3x62)dx=∫^4_1(\frac{x+5}{3})dx-∫^2_1(4-2x)dx-∫^4_2(\frac{3x-6}{2})dx
=13[x22+5x]14[4xx2]1212[3x226x]24=\frac{1}{3}\bigg[\frac{x^2}{2}+5x\bigg]^4_1-\bigg[4x-x^2\bigg]^2_1-\frac{1}{2}\bigg[\frac{3x^2}{2}-6x\bigg]^4_2
=13[8+20125][844+1]12[24246+12]=\frac{1}{3}[8+20-\frac{1}{2}-5]-[8-4-4+1]-\frac{1}{2}[24-24-6+12]
=(13×452)(1)12(6)=(\frac{1}{3}\times\frac{45}{2})-(1)-\frac{1}{2}(6)
=15213=\frac{15}{2}-1-3
=1524=1582=72units=\frac{15}{2}-4=\frac{15-8}{2}=\frac{7}{2}units