Solveeit Logo

Question

Mathematics Question on applications of integrals

Using the method of integration find the area of the triangle ABC,coordinates of whose vertices are A(2,0),B(4,5)and C(6,3)

Answer

The correct answer is:7units7units
The vertices of ∆ABC are A(2,0),B(4,5),and C(6,3).
Integrals
Equation of line segment AB is
y0=5042(x2)y-0=\frac{5-0}{4-2}(x-2)
2y=5x102y=5x-10
y=52(x2)...(1)y=\frac{5}{2}(x-2)...(1)
Equation of line segment BC is
y5=3564(x4)y-5=\frac{3-5}{6-4}(x-4)
2y10=2x+82y-10=-2x+8
2y=2x+182y=-2x+18
y=x+9...(2)y=-x+9...(2)
Equation of line segment CA is
y3=0326(x6)y-3=\frac{0-3}{2-6}(x-6)
4y+12=3x+18-4y+12=-3x+18
4y=3x64y=3x-6
y=34(x2)...(3)y=\frac{3}{4}(x-2)...(3)
Area(ΔABC)=Area(ABLA)+Area(BLMCB)-Area(ACMA)
=2452(x2)dx+46(x+9)dx2634(x2)dx=∫^4_2\frac{5}{2}(x-2)dx+∫^6_4(-x+9)dx-∫^6_2\frac{3}{4}(x-2)dx
=52[x222x]24+[x22+9x]4634[x222x]26=\frac{5}{2}\bigg[\frac{x^2}{2}-2x\bigg]^4_2+\bigg[\frac{-x^2}{2}+9x\bigg]^6_4-\frac{3}{4}\bigg[\frac{x^2}{2}-2x\bigg]^6_2
=52[882+4]+[18+54+836]34[18122+4]=\frac{5}{2}[8-8-2+4]+[-18+54+8-36]-\frac{3}{4}[18-12-2+4]
=5+834(8)=5+8-\frac{3}{4}(8)
=136=13-6
=7units=7units