Solveeit Logo

Question

Question: Using the limit definition, how do you find the derivative of \[f(x) = \sqrt {2x - 1} \]?...

Using the limit definition, how do you find the derivative of f(x)=2x1f(x) = \sqrt {2x - 1} ?

Explanation

Solution

Hint : Here we need to find the derivative of the given function using the limit definition. We have f(x)=limh0f(x+h)f(x)hf'(x) = \mathop {\lim }\limits_{h \to 0} \dfrac{{f(x + h) - f(x)}}{h} . Here we have f(x)=2x1f(x) = \sqrt {2x - 1} by substituting this In the formula we will get the desired answer.

Complete step by step solution:
Given,
f(x)=2x1f(x) = \sqrt {2x - 1} .
From the definition of the derivatives we have,s
f(x)=limh0f(x+h)f(x)hf'(x) = \mathop {\lim }\limits_{h \to 0} \dfrac{{f(x + h) - f(x)}}{h} .
We need f(x+h)f(x + h) , now we find f(x+h)f(x + h) .
f(x+h)=2(x+h)1=2x+2h1f(x + h) = \sqrt {2(x + h) - 1} = \sqrt {2x + 2h - 1}
Now substituting we have,
f(x)=limh0f(x+h)f(x)h\Rightarrow f'(x) = \mathop {\lim }\limits_{h \to 0} \dfrac{{f(x + h) - f(x)}}{h}
f(x)=limh0(2x+2h1)(2x1)hf'(x) = \mathop {\lim }\limits_{h \to 0} \dfrac{{\left( {\sqrt {2x + 2h - 1} } \right) - \left( {\sqrt {2x - 1} } \right)}}{h} .
If we apply the limit now we will have indeterminate method so we multiply and divide by
(2x+2h1)+(2x1)\Rightarrow \left( {\sqrt {2x + 2h - 1} } \right) + \left( {\sqrt {2x - 1} } \right) for further simplification,
f(x)=limh0(2x+2h1)(2x1)h(2x+2h1)+(2x1)(2x+2h1)+(2x1)\Rightarrow f'(x) = \mathop {\lim }\limits_{h \to 0} \dfrac{{\left( {\sqrt {2x + 2h - 1} } \right) - \left( {\sqrt {2x - 1} } \right)}}{h}\dfrac{{\left( {\sqrt {2x + 2h - 1} } \right) + \left( {\sqrt {2x - 1} } \right)}}{{\left( {\sqrt {2x + 2h - 1} } \right) + \left( {\sqrt {2x - 1} } \right)}}
f(x)=limh0(2x+2h1)(2x1)(2x+2h1)+(2x1)h(2x+2h1)+(2x1)\Rightarrow f'(x) = \mathop {\lim }\limits_{h \to 0} \dfrac{{\left( {\sqrt {2x + 2h - 1} } \right) - \left( {\sqrt {2x - 1} } \right)\left( {\sqrt {2x + 2h - 1} } \right) + \left( {\sqrt {2x - 1} } \right)}}{{h\left( {\sqrt {2x + 2h - 1} } \right) + \left( {\sqrt {2x - 1} } \right)}}
The numerator is of the form (ab)(a+b)=a2b2\left( {a - b} \right)\left( {a + b} \right) = {a^2} - {b^2} then we will have,
f(x)=limh0(2x+2h1)2(2x1)2h(2x+2h1)+(2x1)\Rightarrow f'(x) = \mathop {\lim }\limits_{h \to 0} \dfrac{{{{\left( {\sqrt {2x + 2h - 1} } \right)}^2} - {{\left( {\sqrt {2x - 1} } \right)}^2}}}{{h\left( {\sqrt {2x + 2h - 1} } \right) + \left( {\sqrt {2x - 1} } \right)}}
f(x)=limh02x+2h12x+1h(2x+2h1)+(2x1)\Rightarrow f'(x) = \mathop {\lim }\limits_{h \to 0} \dfrac{{2x + 2h - 1 - 2x + 1}}{{h\left( {\sqrt {2x + 2h - 1} } \right) + \left( {\sqrt {2x - 1} } \right)}}
f(x)=limh02hh(2x+2h1)+(2x1)\Rightarrow f'(x) = \mathop {\lim }\limits_{h \to 0} \dfrac{{2h}}{{h\left( {\sqrt {2x + 2h - 1} } \right) + \left( {\sqrt {2x - 1} } \right)}}
f(x)=limh02(2x+2h1)+(2x1)\Rightarrow f'(x) = \mathop {\lim }\limits_{h \to 0} \dfrac{2}{{\left( {\sqrt {2x + 2h - 1} } \right) + \left( {\sqrt {2x - 1} } \right)}}
now we can apply the limit, we will have definite value
f(x)=2(2x+2(0)1)+(2x1)\Rightarrow f'(x) = \dfrac{2}{{\left( {\sqrt {2x + 2\left( 0 \right) - 1} } \right) + \left( {\sqrt {2x - 1} } \right)}}
f(x)=2(2x1)+(2x1)\Rightarrow f'(x) = \dfrac{2}{{\left( {\sqrt {2x - 1} } \right) + \left( {\sqrt {2x - 1} } \right)}}
f(x)=22(2x1)\Rightarrow f'(x) = \dfrac{2}{{2\left( {\sqrt {2x - 1} } \right)}}
f(x)=12x1\Rightarrow f'(x) = \dfrac{1}{{\sqrt {2x - 1} }} . This is the required answer
Therefore, the correct answer is “ f(x)=12x1 f'(x) = \dfrac{1}{{\sqrt {2x - 1} }} ”.

Note : We can solve this if we know the differentiation formula. That is the differentiation of xn{x^n} with respect to ‘x’ is d(xn)dx=nxn1\dfrac{{d\left( {{x^n}} \right)}}{{dx}} = n{x^{n - 1}} .
We have, f(x)=2x1=(2x1)12f(x) = \sqrt {2x - 1} = {\left( {2x - 1} \right)^{\dfrac{1}{2}}} . Differentiation with respect to ‘x’ and using the formula we have,
f(x)=12(2x1)121d(2x)dx\Rightarrow f'(x) = \dfrac{1}{2}{\left( {2x - 1} \right)^{\dfrac{1}{2} - 1}}\dfrac{{d\left( {2x} \right)}}{{dx}}
f(x)=12(2x1)12.2\Rightarrow f'(x) = \dfrac{1}{2}{\left( {2x - 1} \right)^{ - \dfrac{1}{2}}}.2
f(x)=(2x1)12\Rightarrow f'(x) = {\left( {2x - 1} \right)^{ - \dfrac{1}{2}}}
f(x)=12x1\Rightarrow f'(x) = \dfrac{1}{{\sqrt {2x - 1} }}.
Thus in both the cases we have the same answer. But they particularly asked us to solve using the limit definition so we need to solve the above one.