Solveeit Logo

Question

Question: Using the integral test, how do you show whether \[\sum {\dfrac{1}{{n{{(\log n)}^p}}}} \] diverges o...

Using the integral test, how do you show whether 1n(logn)p\sum {\dfrac{1}{{n{{(\log n)}^p}}}} diverges or converges from n=3 to infinity?

Explanation

Solution

Hint : In this question, we have to show whether the given series converges or diverges by using the integral test. According to integral test, if an=f(n){a_n} = f(n) , f(x)f(x) is a non-negative non-increasing function, then the condition for nan\sum\limits_n^\infty {{a_n}} to converge is that the integral 1f(x)dx\int\limits_1^\infty {f(x)} dx is finite and the condition for it to diverge is that the integral is infinite. So, we can easily solve this question by using the above information.

Complete step-by-step answer :
We have to integral test to show whether 1n(logn)p\sum {\dfrac{1}{{n{{(\log n)}^p}}}} converges or diverges from n=3 to infinity.
Let p be a natural number, that is p1p \geqslant 1
For p=1,
31n(logn)pdn=31nlogndn\int\limits_3^\infty {\dfrac{1}{{n{{(\log n)}^p}}}} dn = \int\limits_3^\infty {\dfrac{1}{{n\log n}}} dn
Let
logn=u dlogndn=dudn 1ndn=du   \log n = u \\\ \Rightarrow \dfrac{{d\log n}}{{dn}} = \dfrac{{du}}{{dn}} \\\ \Rightarrow \dfrac{1}{n}dn = du \;
So, we get –
31logn×1ndn=n=3n=1udu 31nlogndn=[logu]n=3n= 31nlogndn=[log(logn)]n=3n= 31nlogndn=log(log)log(log3)   \int\limits_3^\infty {\dfrac{1}{{\log n}} \times \dfrac{1}{n}} dn = \int\limits_{n = 3}^{n = \infty } {\dfrac{1}{u}du} \\\ \Rightarrow \int\limits_3^\infty {\dfrac{1}{{n\log n}}dn} = [\log u]_{n = 3}^{n = \infty } \\\ \Rightarrow \int\limits_3^\infty {\dfrac{1}{{n\log n}}dn} = [\log (\log n)]_{n = 3}^{n = \infty } \\\ \Rightarrow \int\limits_3^\infty {\dfrac{1}{{n\log n}}dn} = \log (\log \infty ) - \log (\log 3) \;
We know that log=\log \infty = \infty so log(log)=\log (\log \infty ) = \infty
31nlogndn=\Rightarrow \int\limits_3^\infty {\dfrac{1}{{n\log n}}dn} = \infty
The integral for p=1 is infinite and thus diverges.
At p>1
31n(logn)pdn\int\limits_3^\infty {\dfrac{1}{{n{{(\log n)}^p}}}dn}
Let –
logn=u du=1ndn   \log n = u \\\ \Rightarrow du = \dfrac{1}{n}dn \;

31n(logn)pdn=n=31updu 31n(logn)pdn=[up+1p+1]n=3 31n(logn)pdn=[1(1p)(logn)p1]n=3 31n(logn)pdn=1(1p)(log)p11(1p)(log3)p1   \Rightarrow \int\limits_3^\infty {\dfrac{1}{{n{{(\log n)}^p}}}dn} = \int\limits_{n = 3}^\infty {\dfrac{1}{{{u^p}}}du} \\\ \Rightarrow \int\limits_3^\infty {\dfrac{1}{{n{{(\log n)}^p}}}dn} = [\dfrac{{{u^{ - p + 1}}}}{{ - p + 1}}]_{n = 3}^\infty \\\ \Rightarrow \int\limits_3^\infty {\dfrac{1}{{n{{(\log n)}^p}}}dn} = [\dfrac{1}{{(1 - p){{(\log n)}^{p - 1}}}}]_{n = 3}^\infty \\\ \Rightarrow \int\limits_3^\infty {\dfrac{1}{{n{{(\log n)}^p}}}dn} = \dfrac{1}{{(1 - p){{(\log \infty )}^{p - 1}}}} - \dfrac{1}{{(1 - p){{(\log 3)}^{p - 1}}}} \;

We know that log=0\log \infty = 0 so we get 1(1p)(log)p1=0\dfrac{1}{{(1 - p){{(\log \infty )}^{p - 1}}}} = 0 .
31n(logn)pdn=01(1p)(log3)p1\Rightarrow \int\limits_3^\infty {\dfrac{1}{{n{{(\log n)}^p}}}dn} = 0 - \dfrac{1}{{(1 - p){{(\log 3)}^{p - 1}}}}
Clearly, 1(1p)(log3)p1\dfrac{1}{{(1 - p){{(\log 3)}^{p - 1}}}} is a finite quantity, so the integral is finite for p>1 and thus converges.
Hence, 1n(logn)p\sum {\dfrac{1}{{n{{(\log n)}^p}}}} diverges for p=1 and converges for p>1.

Note : A series is defined as an expression in which infinitely many terms are added one after the other to a given starting quantity. When we get further and further in a sequence, the terms get closer and closer to a specific limit, that is, when adding the terms one after the other, if we get partial sums that become closer and closer to a given number, then the series converges and it is known as the convergence of the series, otherwise it is a divergent series.