Solveeit Logo

Question

Question: Using the identity $\frac{1}{^{2n+1}C_r} + \frac{1}{^{2n+1}C_{r+1}} = \frac{2n+2}{2n+1} \frac{1}{^{2...

Using the identity 12n+1Cr+12n+1Cr+1=2n+22n+112nCr\frac{1}{^{2n+1}C_r} + \frac{1}{^{2n+1}C_{r+1}} = \frac{2n+2}{2n+1} \frac{1}{^{2n}C_r}, then value of r=119(1)rr20Cr=pq\sum_{r=1}^{19} \frac{(-1)^r r}{^{20}C_r} = -\frac{p}{q}, where p and q are relatively prime natural numbers, then p + q is equal to

Answer

21

Explanation

Solution

The problem asks us to evaluate the sum r=119(1)rr20Cr\sum_{r=1}^{19} \frac{(-1)^r r}{^{20}C_r} using the given identity 12n+1Cr+12n+1Cr+1=2n+22n+112nCr\frac{1}{^{2n+1}C_r} + \frac{1}{^{2n+1}C_{r+1}} = \frac{2n+2}{2n+1} \frac{1}{^{2n}C_r}.

  1. Apply the identity for the given sum: The sum involves 20Cr^{20}C_r, so we set 2n=202n=20, which means n=10n=10. Substitute n=10n=10 into the identity: 12(10)+1Cr+12(10)+1Cr+1=2(10)+22(10)+1120Cr\frac{1}{^{2(10)+1}C_r} + \frac{1}{^{2(10)+1}C_{r+1}} = \frac{2(10)+2}{2(10)+1} \frac{1}{^{20}C_r} 121Cr+121Cr+1=2221120Cr\frac{1}{^{21}C_r} + \frac{1}{^{21}C_{r+1}} = \frac{22}{21} \frac{1}{^{20}C_r} Rearranging this identity to express 120Cr\frac{1}{^{20}C_r}: 120Cr=2122(121Cr+121Cr+1)\frac{1}{^{20}C_r} = \frac{21}{22} \left( \frac{1}{^{21}C_r} + \frac{1}{^{21}C_{r+1}} \right)

  2. Substitute into the summation: Let S=r=119(1)rr20CrS = \sum_{r=1}^{19} \frac{(-1)^r r}{^{20}C_r}. Substitute the expression for 120Cr\frac{1}{^{20}C_r} into SS: S=r=119(1)rr[2122(121Cr+121Cr+1)]S = \sum_{r=1}^{19} (-1)^r r \left[ \frac{21}{22} \left( \frac{1}{^{21}C_r} + \frac{1}{^{21}C_{r+1}} \right) \right] S=2122r=119((1)rr21Cr+(1)rr21Cr+1)S = \frac{21}{22} \sum_{r=1}^{19} \left( \frac{(-1)^r r}{^{21}C_r} + \frac{(-1)^r r}{^{21}C_{r+1}} \right) S=2122[r=119(1)rr21Cr+r=119(1)rr21Cr+1]S = \frac{21}{22} \left[ \sum_{r=1}^{19} \frac{(-1)^r r}{^{21}C_r} + \sum_{r=1}^{19} \frac{(-1)^r r}{^{21}C_{r+1}} \right]

  3. Rearrange the second sum: In the second sum, let k=r+1k = r+1. Then r=k1r = k-1. When r=1,k=2r=1, k=2. When r=19,k=20r=19, k=20. r=119(1)rr21Cr+1=k=220(1)k1(k1)21Ck\sum_{r=1}^{19} \frac{(-1)^r r}{^{21}C_{r+1}} = \sum_{k=2}^{20} \frac{(-1)^{k-1} (k-1)}{^{21}C_k} So, S=2122[r=119(1)rr21Cr+r=220(1)r1(r1)21Cr]S = \frac{21}{22} \left[ \sum_{r=1}^{19} \frac{(-1)^r r}{^{21}C_r} + \sum_{r=2}^{20} \frac{(-1)^{r-1} (r-1)}{^{21}C_r} \right] (using rr instead of kk for consistency)

  4. Combine the sums: The first term in the first sum is for r=1r=1: (1)1121C1=121C1\frac{(-1)^1 \cdot 1}{^{21}C_1} = \frac{-1}{^{21}C_1}. The last term in the second sum is for r=20r=20: (1)201(201)21C20=(1)191921C20=1921C20\frac{(-1)^{20-1} (20-1)}{^{21}C_{20}} = \frac{(-1)^{19} \cdot 19}{^{21}C_{20}} = \frac{-19}{^{21}C_{20}}. For rr from 22 to 1919, we can combine the terms: (1)rr21Cr+(1)r1(r1)21Cr=(1)r1(r+(r1))21Cr=(1)r1(1)21Cr=(1)r21Cr\frac{(-1)^r r}{^{21}C_r} + \frac{(-1)^{r-1} (r-1)}{^{21}C_r} = \frac{(-1)^{r-1} (-r + (r-1))}{^{21}C_r} = \frac{(-1)^{r-1} (-1)}{^{21}C_r} = \frac{(-1)^r}{^{21}C_r}. So, S=2122[121C1+r=219(1)r21Cr+1921C20]S = \frac{21}{22} \left[ \frac{-1}{^{21}C_1} + \sum_{r=2}^{19} \frac{(-1)^r}{^{21}C_r} + \frac{-19}{^{21}C_{20}} \right]

  5. Evaluate the sum r=219(1)r21Cr\sum_{r=2}^{19} \frac{(-1)^r}{^{21}C_r}: Recall the property that for an odd integer NN, k=0N(1)kNCk=0\sum_{k=0}^N \frac{(-1)^k}{^NC_k} = 0. Here, N=21N=21 (an odd integer). So, r=021(1)r21Cr=0\sum_{r=0}^{21} \frac{(-1)^r}{^{21}C_r} = 0. Expand this sum: (1)021C0+(1)121C1+r=219(1)r21Cr+(1)2021C20+(1)2121C21=0\frac{(-1)^0}{^{21}C_0} + \frac{(-1)^1}{^{21}C_1} + \sum_{r=2}^{19} \frac{(-1)^r}{^{21}C_r} + \frac{(-1)^{20}}{^{21}C_{20}} + \frac{(-1)^{21}}{^{21}C_{21}} = 0 We know 21C0=1^{21}C_0 = 1, 21C1=21^{21}C_1 = 21, 21C20=21C2120=21C1=21^{21}C_{20} = ^{21}C_{21-20} = ^{21}C_1 = 21, 21C21=21C2121=21C0=1^{21}C_{21} = ^{21}C_{21-21} = ^{21}C_0 = 1. Substitute these values: 1121+r=219(1)r21Cr+1211=01 - \frac{1}{21} + \sum_{r=2}^{19} \frac{(-1)^r}{^{21}C_r} + \frac{1}{21} - 1 = 0 The terms 11, 121-\frac{1}{21}, 121\frac{1}{21}, 1-1 cancel out. Therefore, r=219(1)r21Cr=0\sum_{r=2}^{19} \frac{(-1)^r}{^{21}C_r} = 0.

  6. Calculate the final value of S: Substitute this back into the expression for SS: S=2122[121C1+01921C20]S = \frac{21}{22} \left[ \frac{-1}{^{21}C_1} + 0 - \frac{19}{^{21}C_{20}} \right] S=2122[1211921]S = \frac{21}{22} \left[ \frac{-1}{21} - \frac{19}{21} \right] S=2122[11921]S = \frac{21}{22} \left[ \frac{-1-19}{21} \right] S=2122[2021]S = \frac{21}{22} \left[ \frac{-20}{21} \right] S=2022=1011S = -\frac{20}{22} = -\frac{10}{11}

  7. Determine p+q: The value is given as pq-\frac{p}{q}, where pp and qq are relatively prime natural numbers. Comparing 1011-\frac{10}{11} with pq-\frac{p}{q}, we get p=10p=10 and q=11q=11. 10 and 11 are relatively prime natural numbers. p+q=10+11=21p+q = 10+11 = 21.

The final answer is 21\boxed{21}.

Explanation: The problem is solved by first using the given identity to express 120Cr\frac{1}{^{20}C_r} in terms of 21Cr^{21}C_r and 21Cr+1^{21}C_{r+1}. This transforms the original sum into a new sum involving terms with 21Cr^{21}C_r. By carefully splitting and combining terms in the new sum, it simplifies to a sum of the form (1)r21Cr\sum \frac{(-1)^r}{^{21}C_r} and some boundary terms. The key property used is that for an odd integer NN, the alternating sum of reciprocals of binomial coefficients k=0N(1)kNCk\sum_{k=0}^N \frac{(-1)^k}{^NC_k} is zero. This allows the central part of the sum to vanish, leaving only the boundary terms which are then easily calculated.