Solveeit Logo

Question

Question: Using the identity \(\cos (A + B) = \cos A\cos B - \sin A\sin B\) , how do you prove that \(\dfrac{1...

Using the identity cos(A+B)=cosAcosBsinAsinB\cos (A + B) = \cos A\cos B - \sin A\sin B , how do you prove that 14cos(3A)=cos3A34cosA\dfrac{1}{4}\cos (3A) = {\cos ^3}A - \dfrac{3}{4}\cos A .

Explanation

Solution

To prove the relation 14cos(3A)=cos3A34cosA\dfrac{1}{4}\cos (3A) = {\cos ^3}A - \dfrac{3}{4}\cos A using the identity cos(A+B)=cosAcosBsinAsinB\cos (A + B) = \cos A\cos B - \sin A\sin B .
To prove this, we will consider left- hand side i.e., cos(3A)\cos (3A) and write 3A3A as A+2AA + 2A , from where, we’ll get the values for AA and BB , then using the identity we’ll solve until it becomes equal to the right-hand side.

Formulas to be used:
Half angle formulae
sin2A=2sinAcosA\sin 2A = 2\sin A\cos A ,
cos2A=cos2Asin2A\cos 2A = {\cos ^2}A - {\sin ^2}A ,
Also, sin2A+cos2A=1{\sin ^2}A + {\cos ^2}A = 1 .

Complete step-by-step answer:
We are given with the identity cos(A+B)=cosAcosBsinAsinB\cos (A + B) = \cos A\cos B - \sin A\sin B and using this identity we need to prove the relation 14cos(3A)=cos3A34cosA\dfrac{1}{4}\cos (3A) = {\cos ^3}A - \dfrac{3}{4}\cos A .
Let us consider the left- hand side i.e., cos3A\cos 3A which can be written as cos(A+2A)\cos (A + 2A) .
Now, we have A=AA = A and B=2AB = 2A .
Now, using the given identity, we can write it as cos(A+2A)=cosAcos2AsinAsin2A\cos (A + 2A) = \cos A\cos 2A - \sin A\sin 2A .
Next, we know the identities sin2A=2sinAcosA\sin 2A = 2\sin A\cos A and cos2A=cos2Asin2A\cos 2A = {\cos ^2}A - {\sin ^2}A .
So, we’ll replace sin2A\sin 2A by 2sinAcosA2\sin A\cos A and cos2A\cos 2A by cos2Asin2A{\cos ^2}A - {\sin ^2}A , then the equation becomes,
cos(A+2A)=cosA(cos2Asin2A)sinA(2sinAcosA)\cos (A + 2A) = \cos A({\cos ^2}A - {\sin ^2}A) - \sin A(2\sin A\cos A) .
Now, on solving the brackets, we get,
cos(A+2A)=cos3AcosAsin2A2sin2AcosA\cos (A + 2A) = {\cos ^3}A - \cos A{\sin ^2}A - 2{\sin ^2}A\cos A .
Solving further gives cos(A+2A)=cos3A3sin2AcosA\cos (A + 2A) = {\cos ^3}A - 3{\sin ^2}A\cos A .
Now, since all the functions on the right- hand side in the equation to be proved are ‘ cosine\cos ine ‘. Therefore, using the identity sin2A+cos2A=1{\sin ^2}A + {\cos ^2}A = 1 we get, sin2A=1cos2A{\sin ^2}A = 1 - {\cos ^2}A .
So, replacing sin2A{\sin ^2}A by 1cos2A1 - {\cos ^2}A , the above equation becomes, cos(A+2A)=cos3A2cosA(1cos2A)\cos (A + 2A) = {\cos ^3}A - 2\cos A(1 - {\cos ^2}A) ,
i.e., on opening the brackets, we get, cos(A+2A)=cos3A2cosA2cos3A\cos (A + 2A) = {\cos ^3}A - 2\cos A - 2{\cos ^3}A ,
which gives, cos(A+2A)=4cos3A3cosA\cos (A + 2A) = 4{\cos ^3}A - 3\cos A .
Now, take 44 common from right- hand side, we get,
cos(A+2A)=4(cos3A34cosA)\cos (A + 2A) = 4\left( {{{\cos }^3}A - \dfrac{3}{4}\cos A} \right) .
Finally, dividing both sides by 44 , we get,
14cos(A+2A)=cos3A34cosA\dfrac{1}{4}\cos (A + 2A) = {\cos ^3}A - \dfrac{3}{4}\cos A ,
14cos(3A)=cos3A34cosA\dfrac{1}{4}\cos (3A) = {\cos ^3}A - \dfrac{3}{4}\cos A .
Hence the given relation is proved using the given identity.

Note: The equation that we have proved is the same as cos(3A)=4cos3A3cosA\cos (3A) = 4{\cos ^3}A - 3\cos A , which is a direct identity to remember.
A+2AA + 2A is the same as 2A+A2A + A , so we can write it anyway.
You need to see whether the functions on the right- hand side are sine\sin e or cosine\cos ine or any other function and according to that use the required identities.