Solveeit Logo

Question

Question: Using the formula \[\sin (A - B) = \sin A \cdot \cos B - \cos A \cdot \sin B\] find the value of \(\...

Using the formula sin(AB)=sinAcosBcosAsinB\sin (A - B) = \sin A \cdot \cos B - \cos A \cdot \sin B find the value of sin15\sin {15^ \circ }
A) 3\sqrt 3
B) 3+1\sqrt 3 + 1
C) 3122\dfrac{{\sqrt 3 - 1}}{{2\sqrt 2 }}
D) 3+122\dfrac{{\sqrt 3 + 1}}{{2\sqrt 2 }}

Explanation

Solution

Generally we know the values of sin\sin , cos\cos and tan\tan of 0{0^ \circ }, 30{30^ \circ }, 45{45^ \circ }, 60{60^ \circ } and 90{90^ \circ }. To obtain the values in between then use the formula of sin(AB)\sin (A - B), sin(A+B)\sin (A + B), cos(AB)\cos (A - B) and cos(A+B)\cos (A + B). Here we have to find the value of 15{15^ \circ } and we know that 15=4530=6045{15^ \circ } = {45^ \circ } - {30^ \circ } = {60^ \circ } - {45^ \circ }, so use any one combination and use given formula sin(AB)=sinAcosBcosAsinB\sin (A - B) = \sin A \cdot \cos B - \cos A \cdot \sin B. Put the standard values, simplify the equation to obtain the value of sin15\sin {15^ \circ }.

Complete step-by-step answer:
In this case we have to find the value of sin15\sin {15^ \circ }.
Generally we know the values of sin\sin , cos\cos and tan\tan of 0{0^ \circ }, 30{30^ \circ }, 45{45^ \circ }, 60{60^ \circ } and 90{90^ \circ }. To obtain the values in between then use the formula for sin(AB)\sin (A - B), sin(A+B)\sin (A + B), cos(AB)\cos (A - B) ad cos(A+B)\cos (A + B).
As we know that 15=4530=6045{15^ \circ } = {45^ \circ } - {30^ \circ } = {60^ \circ } - {45^ \circ }, so use any one combination to obtain value of sin15\sin {15^ \circ }.
Let’s take 15=6045{15^ \circ } = {60^ \circ } - {45^ \circ }. However you can take 15=4530{15^ \circ } = {45^ \circ } - {30^ \circ } and solve the equation similarly as solved below. You will get the same answer.
Here, we can say that the value of A and B as A=60A = {60^ \circ } and B=45B = {45^ \circ }.
Using the formula of sin of difference of angle, sin(AB)=sinAcosBcosAsinB\sin (A - B) = \sin A \cdot \cos B - \cos A \cdot \sin B
Put value of A=60A = {60^ \circ } and B=45B = {45^ \circ } in above equation,
So, sin(6045)=sin60cos45cos60sin45\sin ({60^ \circ } - {45^ \circ }) = \sin {60^ \circ } \cdot \cos {45^ \circ } - \cos {60^ \circ } \cdot \sin {45^ \circ },
So, sin(15)=sin60cos45cos60sin45\sin ({15^ \circ }) = \sin {60^ \circ } \cdot \cos {45^ \circ } - \cos {60^ \circ } \cdot \sin {45^ \circ }.
As we know that sin45=12\sin {45^ \circ } = \dfrac{1}{{\sqrt 2 }}, sin60=32\sin {60^ \circ } = \dfrac{{\sqrt 3 }}{2}, cos45=12\cos {45^ \circ } = \dfrac{1}{{\sqrt 2 }} and cos60=12\cos {60^ \circ } = \dfrac{1}{2},
So putting the values in sin(15)=sin60cos45cos60sin45\sin ({15^ \circ }) = \sin {60^ \circ } \cdot \cos {45^ \circ } - \cos {60^ \circ } \cdot \sin {45^ \circ } equation,
sin(15)=32121212\sin ({15^ \circ }) = \dfrac{{\sqrt 3 }}{2} \cdot \dfrac{1}{{\sqrt 2 }} - \dfrac{1}{2} \cdot \dfrac{1}{{\sqrt 2 }}
Taking 12\dfrac{1}{{\sqrt 2 }} term common in right of the equation,

So, sin(15)=12(3212)\sin ({15^ \circ }) = \dfrac{1}{{\sqrt 2 }} \cdot (\dfrac{{\sqrt 3 }}{2} - \dfrac{1}{2})
Simplifying, sin(15)=12(312)\sin ({15^ \circ }) = \dfrac{1}{{\sqrt 2 }} \cdot (\dfrac{{\sqrt 3 - 1}}{2})
So, sin(15)=3122\sin ({15^ \circ }) = \dfrac{{\sqrt 3 - 1}}{{2\sqrt 2 }}
So the value of sin15\sin {15^ \circ } is 3122\dfrac{{\sqrt 3 - 1}}{{2\sqrt 2 }}.

So, Option (C) is the correct answer.

Note: In similar type questions we can find the value of sin75\sin {75^ \circ }, cos15\cos {15^ \circ }, cos75\cos {75^ \circ } and so on. As 75=30+45{75^ \circ } = {30^ \circ } + {45^ \circ } we can use similar type formula to obtain value of sin75\sin {75^ \circ } or cos75\cos {75^ \circ }. There are some equations for solving such type of questions, like sin(A+B)=sinAcosB+cosAsinB\sin (A + B) = \sin A \cdot \cos B + \cos A \cdot \sin B, cos(A+B)=cosAcosBsinAsinB\cos (A + B) = \cos A \cdot \cos B - \sin A \cdot \sin B and cos(AB)=cosAcosB+sinAsinB\cos (A - B) = \cos A \cdot \cos B + \sin A \cdot \sin B.