Question
Question: Using the formula \[\sin (A - B) = \sin A \cdot \cos B - \cos A \cdot \sin B\] find the value of \(\...
Using the formula sin(A−B)=sinA⋅cosB−cosA⋅sinB find the value of sin15∘
A) 3
B) 3+1
C) 223−1
D) 223+1
Solution
Generally we know the values of sin, cosand tan of 0∘, 30∘, 45∘, 60∘ and 90∘. To obtain the values in between then use the formula of sin(A−B), sin(A+B), cos(A−B) and cos(A+B). Here we have to find the value of 15∘ and we know that 15∘=45∘−30∘=60∘−45∘, so use any one combination and use given formula sin(A−B)=sinA⋅cosB−cosA⋅sinB. Put the standard values, simplify the equation to obtain the value of sin15∘.
Complete step-by-step answer:
In this case we have to find the value of sin15∘.
Generally we know the values of sin, cosand tan of 0∘, 30∘, 45∘, 60∘ and 90∘. To obtain the values in between then use the formula for sin(A−B), sin(A+B), cos(A−B) ad cos(A+B).
As we know that 15∘=45∘−30∘=60∘−45∘, so use any one combination to obtain value of sin15∘.
Let’s take 15∘=60∘−45∘. However you can take 15∘=45∘−30∘ and solve the equation similarly as solved below. You will get the same answer.
Here, we can say that the value of A and B as A=60∘ and B=45∘.
Using the formula of sin of difference of angle, sin(A−B)=sinA⋅cosB−cosA⋅sinB
Put value of A=60∘ and B=45∘ in above equation,
So, sin(60∘−45∘)=sin60∘⋅cos45∘−cos60∘⋅sin45∘,
So, sin(15∘)=sin60∘⋅cos45∘−cos60∘⋅sin45∘.
As we know that sin45∘=21, sin60∘=23, cos45∘=21 and cos60∘=21,
So putting the values in sin(15∘)=sin60∘⋅cos45∘−cos60∘⋅sin45∘ equation,
sin(15∘)=23⋅21−21⋅21
Taking 21 term common in right of the equation,
So, sin(15∘)=21⋅(23−21)
Simplifying, sin(15∘)=21⋅(23−1)
So, sin(15∘)=223−1
So the value of sin15∘ is 223−1.
So, Option (C) is the correct answer.
Note: In similar type questions we can find the value of sin75∘, cos15∘, cos75∘ and so on. As 75∘=30∘+45∘ we can use similar type formula to obtain value of sin75∘ or cos75∘. There are some equations for solving such type of questions, like sin(A+B)=sinA⋅cosB+cosA⋅sinB, cos(A+B)=cosA⋅cosB−sinA⋅sinB and cos(A−B)=cosA⋅cosB+sinA⋅sinB.