Solveeit Logo

Question

Question: Using the formula, \(\cos A = \sqrt {\dfrac{{1 + \cos 2A}}{2}} \) find the value of \(\cos {30^ \cir...

Using the formula, cosA=1+cos2A2\cos A = \sqrt {\dfrac{{1 + \cos 2A}}{2}} find the value of cos30\cos {30^ \circ }, it is being given that cos60=12\cos {60^ \circ } = \dfrac{1}{2}

Explanation

Solution

Hint: To solve this problem we need to have knowledge about trigonometric values. Here let us put A=30A = {30^ \circ } in a given formula and simplify it.

Complete step by step answer:
Here we have to find the value of cos30\cos {30^ \circ }
Let us use the given formula cosA=1+cos2A2\cos A = \sqrt {\dfrac{{1 + \cos 2A}}{2}}
Now let us substitute A=30A = {30^ \circ } in above formula where we get
cos30=1+cos2×302\Rightarrow \cos {30^ \circ } = \sqrt {\dfrac{{1 + \cos 2 \times {{30}^ \circ }}}{2}}
cos30=1+cos602\Rightarrow \cos {30^ \circ } = \sqrt {\dfrac{{1 + \cos {{60}^ \circ }}}{2}}
Here it is given that cos60=12\cos {60^ \circ } = \dfrac{1}{2} .Now on substituting the value in the above term we get
cos30=1+122\Rightarrow \cos {30^ \circ } = \sqrt {\dfrac{{1 + \dfrac{1}{2}}}{2}}
cos30=34\Rightarrow \cos {30^ \circ } = \sqrt {\dfrac{3}{4}}
cos30=32\Rightarrow \cos {30^ \circ } = \dfrac{{\sqrt 3 }}{2}

Therefore the value of cos30=32\cos {30^ \circ } = \dfrac{{\sqrt 3 }}{2}

NOTE: We have other formulas of cos2A\cos 2A as:
cos2A=cos2Asin2A cos2A=12sin2A  \Rightarrow \cos 2A = {\cos ^2}A - {\sin ^2}A \\\ \Rightarrow \cos 2A = 1 - 2{\sin ^2}A \\\
If required, we can use these formulas as well. Although in this problem, we are restricted to use a specific formula. So, we don’t have a choice in this problem.