Question
Question: Using the factor theorem it is found that b+c, c+a and a+b are three factors of the determinant \(\l...
Using the factor theorem it is found that b+c, c+a and a+b are three factors of the determinant $\left| \begin{matrix}
- 2a & a + b & a + c \ b + a & - 2b & b + c \ c + a & c + b & - 2c \end{matrix} \right|$.
The other factor in the value of the determinant is
A
4
B
2
C
a+b+c
D
None of these
Answer
4
Explanation
Solution
Let$\left| \begin{matrix}
- 2a & a + b & a + c \ b + a & - 2b & b + c \ c + a & c + b & - 2c \end{matrix} \right| = k(b + c)(c + a)(a + b)$Putting
a = b = c =(1−α)(1−β)(1−γ)αβγ(−1)(β−α)(γ−α)
then $\left| \begin{matrix}
- 2\lambda & 2\lambda & 2\lambda \ 2\lambda & - 2\lambda & 2\lambda \ 2\lambda & 2\lambda & - 2\lambda \end{matrix} \right| = k(2\lambda)(2\lambda)(2\lambda)$
∴ k = $\left| \begin{matrix}
- 1 & 1 & 1 \ 1 & - 1 & 1 \ 1 & 1 & - 1 \end{matrix} \right| = - 1(0) - 1( - 2) + 1(2) = 4$