Question
Mathematics Question on Continuity and differentiability
Using the fact that sin (A+B)=sinAcosB+cosAsinB and the differentiation, obtain the sum formula for cosines.
Answer
sin(A+B)=sinAcosB+cosAsinB
Differentiating both sides with respect to x, we obtain
dxd[sin(A+B)]=dxd(sinAcosB)+dxd(cosAsinB)
⇒cos(A+B).dxdA+B)=cosB.dxd(sinA)+sinA.dxdcosB)+sinB.dxd(cosA)+cosA.dxd(sinB)
⇒cos(A+B).dxd(A+B)=cosB.cosAdxdA+sinA(-sinB)dxdB+sinB(-sinA).dxdA+cosAcosBdxdB
⇒cos(A+B).[dxdA+dxdB]=(cosAcosb-sinAsinB).[dxdA+dxdB]
∴cos(A+B)=cosAcosB-sinAsinB