Solveeit Logo

Question

Mathematics Question on Continuity and differentiability

Using the fact that sin (A+B)=sinAcosB+cosAsinB and the differentiation, obtain the sum formula for cosines.

Answer

sin(A+B)=sinAcosB+cosAsinB

Differentiating both sides with respect to x, we obtain
ddx\frac{d}{dx}[sin(A+B)]=ddx\frac{d}{dx}(sinAcosB)+ddx\frac{d}{dx}(cosAsinB)
⇒cos(A+B).ddx\frac{d}{dx}A+B)=cosB.ddx\frac{d}{dx}(sinA)+sinA.ddx\frac{d}{dx}cosB)+sinB.ddx\frac{d}{dx}(cosA)+cosA.ddx\frac{d}{dx}(sinB)
⇒cos(A+B).ddx\frac{d}{dx}(A+B)=cosB.cosAdAdx\frac{dA}{dx}+sinA(-sinB)dBdx\frac{dB}{dx}+sinB(-sinA).dAdx\frac{dA}{dx}+cosAcosBdBdx\frac{dB}{dx}
⇒cos(A+B).[dAdx\frac{dA}{dx}+dBdx\frac{dB}{dx}]=(cosAcosb-sinAsinB).[dAdx\frac{dA}{dx}+dBdx\frac{dB}{dx}]
∴cos(A+B)=cosAcosB-sinAsinB