Solveeit Logo

Question

Physics Question on physical world

Using the expression 2d sin θ=λ,\theta =\lambda, one calculates the values of d by measuring the corresponding angles θ\theta in the range 0 to 90^{\circ}. The wavelength X is exactly known and the error in θ\theta is constant for all values of θ\theta. As θ\theta increases from 0^{\circ}

A

the absolute error in d remains constant

B

the absolute error in d increases

C

the fractional error in d remains constant

D

the fractional error in d decreases

Answer

the fractional error in d decreases

Explanation

Solution

d=λ2sinθd=\frac{\lambda}{2 sin \, \theta}
\hspace10mm ln \, d=ln \, \lambda-ln \, 2-ln \, sin \, \theta
\hspace10mm \frac{\Delta (d)}{d}=0-0-\frac{1}{sin \, \theta} \times cos \theta (\Delta \theta)
Fractional error=Δdd=(cotθ)Δθ|\frac{\Delta d}{d}|=(cot \, \theta) \Delta \theta
Absolute error Δd=(dcotθ)Δθ=(λ2sinθ)(cosθsinθ)Δθ\Delta d=(d \, cot \theta) \Delta \theta=\big(\frac{\lambda}{2 \, sin \, \theta}\big) \big(\frac{cos \theta}{sin \theta}\big)\Delta \theta
Now, given that Δθ\Delta \theta= constant
As θ\theta increases, sinθ\theta increases, cosθ\thetaand cotθ\theta decrease.
\therefore Both fractional and absolute errors decrease.