Solveeit Logo

Question

Question: Using the elementary operations, find the inverse of the following matrix \[\left( {\begin{array}...

Using the elementary operations, find the inverse of the following matrix

{ - 1}&1&2 \\\ 1&2&3 \\\ 3&1&1 \end{array}} \right)$$
Explanation

Solution

Let the given matrix be A. The given matrix A can also be expressed as A=AIA = AI, where II is the identity matrix. So the inverse of AA can be expressed as I=A1AI = {A^{ - 1}}A Apply the necessary column and row matrix. Now using the necessary row and column transformation makes the LHS matrix an identity matrix to find the A1{A^{ - 1}} .

Complete step by step answer:
Now we can express the given matrix A as A=AIA=AI , where II represents the identity matrix.
So now we can express the matrix as I=A1AI = {A^{ - 1}}A for doing the necessary elementary transformations.
The elementary transformations should be done in such a way that it should make the LHS an identity matrix through step by step operations or procedures.
Now expressing the matrix AA as A=IAA=IA we get

-1 & 1 & 2 \\\ 1 & 2 & 3 \\\ 3 & 1 & 1 \\\ \end{matrix} \right)=\left( \begin{matrix} 1 & 0 & 0 \\\ 0 & 1 & 0 \\\ 0 & 0 & 1 \\\ \end{matrix} \right)A$$ $$$$ Applying ${{R}_{1}}\rightleftharpoons {{R}_{2}}$ , we get $$\left( \begin{matrix} 1 & 2 & 3 \\\ -1 & 1 & 2 \\\ 3 & 1 & 1 \\\ \end{matrix} \right)=\left( \begin{matrix} 0 & 1 & 0 \\\ 1 & 0 & 0 \\\ 0 & 0 & 1 \\\ \end{matrix} \right)A$$ Now applying ${{R}_{2}}\to {{R}_{2}}+{{R}_{1}}$ and ${{R}_{3}}\to {{R}_{3}}-3{{R}_{1}}$ , the equation becomes $$\left( \begin{matrix} 1 & 2 & 3 \\\ 0 & 3 & 5 \\\ 0 & -5 & -8 \\\ \end{matrix} \right)=\left( \begin{matrix} 0 & 1 & 0 \\\ 1 & 1 & 0 \\\ 0 & -3 & 1 \\\ \end{matrix} \right)A$$ Now applying ${{R}_{1}}\to {{R}_{1}}-\dfrac{2}{3}{{R}_{2}}$ , the equation becomes $$\left( \begin{matrix} 1 & 0 & \dfrac{-1}{3} \\\ 0 & 3 & 5 \\\ 0 & -5 & -8 \\\ \end{matrix} \right)=\left( \begin{matrix} \dfrac{-2}{3} & \dfrac{1}{3} & 0 \\\ 1 & 1 & 0 \\\ 0 & -3 & 1 \\\ \end{matrix} \right)A$$ Apply ${{R}_{2}}\to \dfrac{1}{3}{{R}_{2}}$ to get the equation as $$\left( \begin{matrix} 1 & 0 & \dfrac{-1}{3} \\\ 0 & 1 & \dfrac{5}{3} \\\ 0 & -5 & -8 \\\ \end{matrix} \right)=\left( \begin{matrix} \dfrac{-2}{3} & \dfrac{1}{3} & 0 \\\ \dfrac{1}{3} & \dfrac{1}{3} & 0 \\\ 0 & -3 & 1 \\\ \end{matrix} \right)A$$ Apply ${{R}_{3}}\to {{R}_{3}}+5{{R}_{2}}$. $$\left( \begin{matrix} 1 & 0 & \dfrac{-1}{3} \\\ 0 & 1 & \dfrac{5}{3} \\\ 0 & 0 & \dfrac{1}{3} \\\ \end{matrix} \right)=\left( \begin{matrix} \dfrac{-2}{3} & \dfrac{1}{3} & 0 \\\ \dfrac{1}{3} & \dfrac{1}{3} & 0 \\\ \dfrac{5}{3} & \dfrac{-4}{3} & 1 \\\ \end{matrix} \right)A$$ Apply ${{R}_{1}}\to {{R}_{1}}+{{R}_{3}}$ and ${{R}_{2}}\to {{R}_{2}}-5{{R}_{3}}$ , the equation becomes $$\left( \begin{matrix} 1 & 0 & 0 \\\ 0 & 1 & 0 \\\ 0 & 0 & \dfrac{1}{3} \\\ \end{matrix} \right)=\left( \begin{matrix} 1 & 1 & 1 \\\ -8 & 7 & -5 \\\ \dfrac{5}{3} & \dfrac{-4}{3} & 1 \\\ \end{matrix} \right)A$$ Applying the final elementary transformation ${{R}_{3}}\to 3{{R}_{3}}$ to make the equation as $$\left( \begin{matrix} 1 & 0 & 0 \\\ 0 & 1 & 0 \\\ 0 & 0 & 1 \\\ \end{matrix} \right)=\left( \begin{matrix} 1 & -1 & 1 \\\ -8 & 7 & 5 \\\ 5 & -4 & 3 \\\ \end{matrix} \right)A$$ Here the LHS has become an identity matrix, so we can stop with the elementary transformation procedures. Now taking the RHS A to the LHS, we get the ${{A}^{-1}}$ . Hence ${{A}^{-1}}=\left( \begin{matrix} 1 & -1 & 1 \\\ -8 & 7 & 5 \\\ 5 & -4 & 3 \\\ \end{matrix} \right)$ Thus the inverse of the given matrix is $\left( \begin{matrix} 1 & -1 & 1 \\\ -8 & 7 & 5 \\\ 5 & -4 & 3 \\\ \end{matrix} \right)$ **Note:** The elementary transformation should be done in such a way that the LHS side has to be made an identity matrix. Be careful while doing the mathematical operations in the elementary transformation as the student can usually commit a mistake in performing them. One silly mistake in the elementary transformation can make the entire solution wrong.