Solveeit Logo

Question

Question: Using the Binomial Theorem, evaluate \[{{\left( 101 \right)}^{4}}\]...

Using the Binomial Theorem, evaluate (101)4{{\left( 101 \right)}^{4}}

Explanation

Solution

In the question we will first separate the numbers (in form of sum) and keep one of the numbers as 11 . Now the formula we will use to find the value of the question is:
(a+b)n=nC0an+nC1an1b1+nC1an2b2+...+nCnbn{{\left( a+b \right)}^{n}}={}^{n}{{C}_{0}}{{a}^{n}}+{}^{n}{{C}_{1}}{{a}^{n-1}}{{b}^{1}}+{}^{n}{{C}_{1}}{{a}^{n-2}}{{b}^{2}}+...+{}^{n}{{C}_{n}}{{b}^{n}}
where aa and bb are the sum of the value of the numbers given in the question and one of them is 11 for easier calculation while nn is the power upto which the binomial is evaluated.

Complete step-by-step answer:
Simplifying the values of the binomial theorem by placing the value of n=4n=4
(a+b)n=nC0an+nC1an1b1+nC1an2b2+...+nCnbn{{\left( a+b \right)}^{n}}={}^{n}{{C}_{0}}{{a}^{n}}+{}^{n}{{C}_{1}}{{a}^{n-1}}{{b}^{1}}+{}^{n}{{C}_{1}}{{a}^{n-2}}{{b}^{2}}+...+{}^{n}{{C}_{n}}{{b}^{n}}
(a+b)n=4C0a4+4C1a41b1+4C2a42b2+4C3a43b3+4C4a44b4{{\left( a+b \right)}^{n}}={}^{4}{{C}_{0}}{{a}^{4}}+{}^{4}{{C}_{1}}{{a}^{4-1}}{{b}^{1}}+{}^{4}{{C}_{2}}{{a}^{4-2}}{{b}^{2}}+{}^{4}{{C}_{3}}{{a}^{4-3}}{{b}^{3}}+{}^{4}{{C}_{4}}{{a}^{4-4}}{{b}^{4}}
Placing the values of a,ba,b in the formula as (a+b)=(100+1)(a+b)=(100+1) respectively, we get:
4C0a4+4C1a3b1+4C2a2b2+4C3a1b3+4C4a0b4\Rightarrow {}^{4}{{C}_{0}}{{a}^{4}}+{}^{4}{{C}_{1}}{{a}^{3}}{{b}^{1}}+{}^{4}{{C}_{2}}{{a}^{2}}{{b}^{2}}+{}^{4}{{C}_{3}}{{a}^{1}}{{b}^{3}}+{}^{4}{{C}_{4}}{{a}^{0}}{{b}^{4}}
(100+1)n=4C0(100)4+4C1(100)311+4C2(100)212+4C3(100)113+4C4(100)014{{\left( 100+1 \right)}^{n}}={}^{4}{{C}_{0}}{{\left( 100 \right)}^{4}}+{}^{4}{{C}_{1}}{{\left( 100 \right)}^{3}}{{1}^{1}}+{}^{4}{{C}_{2}}{{\left( 100 \right)}^{2}}{{1}^{2}}+{}^{4}{{C}_{3}}{{\left( 100 \right)}^{1}}{{1}^{3}}+{}^{4}{{C}_{4}}{{\left( 100 \right)}^{0}}{{1}^{4}}
Calculating the R.H.S of the binomial theorem and solving the combination of all the five combinations 4C0,4C1,4C2,4C3,4C4{}^{4}{{C}_{0}},{}^{4}{{C}_{1}},{}^{4}{{C}_{2}},{}^{4}{{C}_{3}},{}^{4}{{C}_{4}} we get the value as:
1(100)4+41(100)311+4.32.1(100)212+4.3.23.2.1(100)113+(100)014\Rightarrow 1{{\left( 100 \right)}^{4}}+\frac{4}{1}{{\left( 100 \right)}^{3}}{{1}^{1}}+\frac{4.3}{2.1}{{\left( 100 \right)}^{2}}{{1}^{2}}+\frac{4.3.2}{3.2.1}{{\left( 100 \right)}^{1}}{{1}^{3}}+{{\left( 100 \right)}^{0}}{{1}^{4}}
(100)4+4(100)3+6(100)2+4(100)1+(100)0\Rightarrow {{\left( 100 \right)}^{4}}+4{{\left( 100 \right)}^{3}}+6{{\left( 100 \right)}^{2}}+4{{\left( 100 \right)}^{1}}+{{\left( 100 \right)}^{0}}
100000000+4000000+60000+400+1\Rightarrow 100000000+4000000+60000+400+1
104060401\Rightarrow 104060401

Hence, the value of (101)4{{\left( 101 \right)}^{4}} using binomial theorem is 104060401104060401.

Note: Students may go wrong while solving the powers and the combination, remember the first part of the combination will always be an{{a}^{n}} and last part be bn{{b}^{n}} and the power of aa will decrease and power of bb will increase.