Question
Question: Using suitable identities, expand the following: (a) \({{\left( \dfrac{x}{5}-3y \right)}^{2}}\) ...
Using suitable identities, expand the following:
(a) (5x−3y)2
(b) (11x+0.2y)2
(c) (4a−56)2
(d) (y−52x)3
(e) (−3a+5b+4c)2
(f) (21a−b−31c)
Solution
Hint: To expand (a) and (c), use the identity ′′(a−b)2=a2−2ab+b2′′. To expand (b), use the identity ′′(a+b)2=a2+2ab+b2′′. To expand (d), use the identity ′′(a−b)3=a3−b3−3ab(a−b)′′. To expand (e) and (f), use the identity ′′(a+b+c)3=a2+b2+c2+2ab+2bc+2ca′′.
Complete step-by-step answer:
(a) (5x−3y)2
We have to expand this expression using a suitable identity.
Identity that can be used: ′′(a−b)2=a2−2ab+b2′′
Here a=5x and b=3y .
Putting a=5xandb=3y in the above identity, we will get.
(5x−3y)2=(5x)2−2(5x)(3y)+(3y)2⇒(5x−3y)2=25x2−56xy+9y2
(b) (11x+0.2y)2
To expand this algebraic expression, the identity that can be used is: ′′(a+b)2=a2+2ab+b2′′.
Here a=11x and b=0.2y
On putting a=11x and b=0.2y in the above identity, we will get: -
(11x+0.2y)2=(11x)2+2(11x)(0.2y)+(0.2y)2
⇒(11x+0.2y)2=121x2+4.4xy+0.04y2
(c)(4a−56)2
To expand the algebraic expression, the identity that can be used is: ′′(x−y)2=x2−2xy+y2′′ on putting x=4a and y=5b, we will get-
(4a−5b)2=(4a)2−2(4a)(5b)+(5b)2⇒(4a−5b)2=16a2−40ab+25b2
(d) (y−52x)3
To expand this algebraic expression, the identity that can be used is: ′′(a−b)3=a3−b3−3ab(a−b)′′. On putting a=y and b= 52x in the above identity, we will ge (y−52x)3=y3−(52x)3−3y(52x)(y−52x)⇒(y−52x)3=y3−(1258x)3−(56xy)(y−52x)
(e)(−3a+5b+4c)2
To expand this algebraic expression, the identity that can be used is: ′′(x+y+z)3=x2+y2+z2+2xy+2yz+2zx′′ . on putting x=-34, y=5b and z=4c in above identity, we will get-