Solveeit Logo

Question

Question: Using section formula show that the points \(A\left( 2,-3,4 \right),B\left( -1,2,1 \right)\) and \(C...

Using section formula show that the points A(2,3,4),B(1,2,1)A\left( 2,-3,4 \right),B\left( -1,2,1 \right) and C(0,13,2)C\left( 0,\dfrac{1}{3},2 \right) are collinear.

Explanation

Solution

Points A,B,CA,B,C are collinear if point CC divides the line ABAB in some ratio. This ratio can be found out using section formula.

Complete step-by-step answer:
Before proceeding with the question, we must know the section formula. Let us consider a line ABAB with a point CC lying on it. Let us assume that point CC is dividing this line ABAB in ratio of m:nm:n.

If the coordinates of AA is (x,y,z)\left( x',y',z' \right) and the coordinates of BB is (x,y,z)\left( x'',y'',z'' \right), then, from the section formula, the coordinates of CC are,
(mx+nxm+n,my+nym+n,mz+nzm+n)................(1)\left( \dfrac{mx''+nx'}{m+n},\dfrac{my''+ny'}{m+n},\dfrac{mz''+nz'}{m+n} \right)................\left( 1 \right)
In this question, we have to prove that point A(2,3,4),B(1,2,1)A\left( 2,-3,4 \right),B\left( -1,2,1 \right) and C(0,13,2)C\left( 0,\dfrac{1}{3},2 \right) are collinear. Points A,B,CA,B,C can be said to be collinear if point CC divides the line ABAB in some ratio. Let us assume that point CC divides the line ABAB in a ratio k:1k:1.

From the section formula, we can find the value of kk. Using section formula in equation (1)\left( 1 \right), finding the x,y,zx,y,z coordinates of the point CCindividually, we get,
i)i) xx coordinate of point CC = ((k)(1)+(1)(2)k+1)\left( \dfrac{\left( k \right)\left( -1 \right)+\left( 1 \right)\left( 2 \right)}{k+1} \right)
0=k+2k+1 k+2=0 k=2 \begin{aligned} & \Rightarrow 0=\dfrac{-k+2}{k+1} \\\ & \Rightarrow -k+2=0 \\\ & \Rightarrow k=2 \\\ \end{aligned}
ii)ii) yy coordinate of point CC =(k(2)+(1)(3)k+1)\left( \dfrac{k\left( 2 \right)+\left( 1 \right)\left( -3 \right)}{k+1} \right)
13=2k3k+1 k+1=6k9 5k=10 k=2 \begin{aligned} & \Rightarrow \dfrac{1}{3}=\dfrac{2k-3}{k+1} \\\ & \Rightarrow k+1=6k-9 \\\ & \Rightarrow 5k=10 \\\ & \Rightarrow k=2 \\\ \end{aligned}
iii)iii) zz coordinate of point CC = (k(1)+(1)(4)k+1)\left( \dfrac{k\left( 1 \right)+\left( 1 \right)\left( 4 \right)}{k+1} \right)
2=k+4k+1 2k+2=k+4 k=2 \begin{aligned} & \Rightarrow 2=\dfrac{k+4}{k+1} \\\ & \Rightarrow 2k+2=k+4 \\\ & \Rightarrow k=2 \\\ \end{aligned}
Using section formula, we calculated the value of kk from x,y,zx,y,z coordinates individually in (i),(ii),(iii)\left( i \right),\left( ii \right),\left( iii \right). In every of the above case (i),(ii),(iii)\left( i \right),\left( ii \right),\left( iii \right), we get the same value of kk. Since we got a unique value of kk in all these cases, we can say that point CC divides the line ABAB in ratio of 2:12:1. This also means that point CC lies on the line ABAB. Hence, we can say that points A,B,CA,B,C are collinear.
Hence, we can say that A,B,CA,B,C are collinear.

Note: If we get different values of kk from equation obtained in x,y,zx,y,z coordinates in the section formula, we can say that the point CC does not lie on the line ABAB and hence, we can say that A,B,CA,B,C are not collinear.