Solveeit Logo

Question

Question: Using Rolle’s Theorem, the equation \({{\text{a}}_0}{{\text{x}}^{\text{n}}} + {{\text{a}}_1}{{\text{...

Using Rolle’s Theorem, the equation a0xn+a1xn - 1+.....+an=0{{\text{a}}_0}{{\text{x}}^{\text{n}}} + {{\text{a}}_1}{{\text{x}}^{{\text{n - 1}}}} + ..... + {{\text{a}}_{\text{n}}} = 0 has at least one root between 0 and 1, if
A. a0n + a1n - 1+......+an - 1=0 B. a0n - 1 + a1n - 2+......+an - 2=0 C. na0+(n - 1)a1+......+an - 1=0 D. a0n + 1 + a1n+......+an=0  {\text{A}}{\text{. }}\dfrac{{{{\text{a}}_0}}}{{\text{n}}}{\text{ + }}\dfrac{{{{\text{a}}_1}}}{{{\text{n - 1}}}} + ...... + {{\text{a}}_{{\text{n - 1}}}} = 0 \\\ {\text{B}}{\text{. }}\dfrac{{{{\text{a}}_0}}}{{{\text{n - 1}}}}{\text{ + }}\dfrac{{{{\text{a}}_1}}}{{{\text{n - 2}}}} + ...... + {{\text{a}}_{{\text{n - 2}}}} = 0 \\\ {\text{C}}{\text{. n}}{{\text{a}}_0} + \left( {{\text{n - 1}}} \right){{\text{a}}_1} + ...... + {{\text{a}}_{{\text{n - 1}}}} = 0 \\\ {\text{D}}{\text{. }}\dfrac{{{{\text{a}}_0}}}{{{\text{n + 1}}}}{\text{ + }}\dfrac{{{{\text{a}}_1}}}{{\text{n}}} + ...... + {{\text{a}}_{\text{n}}} = 0 \\\

Explanation

Solution

Hint – Observing the equation given in the question we consider a polynomial function, and check its properties. Then we check if our polynomial function holds the conditions of Rolle’s Theorem to determine the answer.

Complete step-by-step answer:
Given data, a0xn+a1xn - 1+.....+an=0{{\text{a}}_0}{{\text{x}}^{\text{n}}} + {{\text{a}}_1}{{\text{x}}^{{\text{n - 1}}}} + ..... + {{\text{a}}_{\text{n}}} = 0.
Consider the function f defined by
f(x) = a0xn + 1n + 1+anxnn+.......+an - 1x22+anx{{\text{a}}_0}\dfrac{{{{\text{x}}^{{\text{n + 1}}}}}}{{{\text{n + 1}}}} + {{\text{a}}_{\text{n}}}\dfrac{{{{\text{x}}^{\text{n}}}}}{{\text{n}}} + ....... + {{\text{a}}_{{\text{n - 1}}}}\dfrac{{{{\text{x}}^2}}}{2} + {{\text{a}}_{\text{n}}}{\text{x}}
Since f(x) is a polynomial, it is continuous and differentiable for all x.
f(x) is continuous in the closed interval [0, 1] and differentiable in the open interval (0, 1).
Also f(0) = 0.
And let us say,
f(1) = a0n + 1+a1n+.....+an - 12+an=0\dfrac{{{{\text{a}}_0}}}{{{\text{n + 1}}}} + \dfrac{{{{\text{a}}_1}}}{{\text{n}}} + ..... + \dfrac{{{{\text{a}}_{{\text{n - 1}}}}}}{{\text{2}}} + {{\text{a}}_{\text{n}}} = 0
i.e. f(0) = f(1)
Thus, all three conditions of Rolle’s Theorem are satisfied. Hence there is at least one value of x in the open interval (0, 1) where f’{\text{f'}}(x) = 0.
i.e. a0xn+a1xn - 1+.....+an=0{{\text{a}}_0}{{\text{x}}^{\text{n}}} + {{\text{a}}_1}{{\text{x}}^{{\text{n - 1}}}} + ..... + {{\text{a}}_{\text{n}}} = 0.
Hence, a0xn+a1xn - 1+.....+an=0{{\text{a}}_0}{{\text{x}}^{\text{n}}} + {{\text{a}}_1}{{\text{x}}^{{\text{n - 1}}}} + ..... + {{\text{a}}_{\text{n}}} = 0 has one root between 0 and 1 if a0n + 1+a1n+.....+an - 12+an=0\dfrac{{{{\text{a}}_0}}}{{{\text{n + 1}}}} + \dfrac{{{{\text{a}}_1}}}{{\text{n}}} + ..... + \dfrac{{{{\text{a}}_{{\text{n - 1}}}}}}{{\text{2}}} + {{\text{a}}_{\text{n}}} = 0.
Option D is the correct answer.

Note – In order to solve this type of questions the key is to assume a polynomial function and verify if it holds all the required conditions.
The Three Conditions of Rolle’s Theorem, for a function f(x) are,
(a and b are the first and last of the values x takes)
f is continuous on the closed interval [a, b], f is differentiable on the open interval (a, b) and f(a) = f(b).