Solveeit Logo

Question

Question: Using properties of integral evaluate: \(\int\limits_{0}^{\pi }{\dfrac{x}{1+\sin x}dx}\)....

Using properties of integral evaluate: 0πx1+sinxdx\int\limits_{0}^{\pi }{\dfrac{x}{1+\sin x}dx}.

Explanation

Solution

The given definite integral requires two different theorems to narrow it down to its simplest form. We apply 0af(x)dx=0af(ax)dx\int\limits_{0}^{a}{f\left( x \right)dx}=\int\limits_{0}^{a}{f\left( a-x \right)dx} and 02af(x)dx=20af(x)dx\int\limits_{0}^{2a}{f\left( x \right)dx}=2\int\limits_{0}^{a}{f\left( x \right)dx} to remove the x component from the numerator part. Then we use trigo integral form to find the solution of the problem.

Complete step-by-step solution
We have been given a definite integral. We assume I=0πx1+sinxdxI=\int\limits_{0}^{\pi }{\dfrac{x}{1+\sin x}dx}.
We have the theorem of definite integral 0af(x)dx=0af(ax)dx\int\limits_{0}^{a}{f\left( x \right)dx}=\int\limits_{0}^{a}{f\left( a-x \right)dx}.
For our given integral a=π,f(x)=x1+sinxa=\pi ,f\left( x \right)=\dfrac{x}{1+\sin x}.
We try to find the value of f(ax)=f(πx)=πx1+sin(πx)=πx1+sinxf\left( a-x \right)=f\left( \pi -x \right)=\dfrac{\pi -x}{1+\sin \left( \pi -x \right)}=\dfrac{\pi -x}{1+\sin x}.
So, I=0πx1+sinxdx=0ππx1+sinxdxI=\int\limits_{0}^{\pi }{\dfrac{x}{1+\sin x}dx}=\int\limits_{0}^{\pi }{\dfrac{\pi -x}{1+\sin x}dx}.
We add these two integrals to remove the x in the numerator of the integral.
We have the theorem abf(x)dx+abg(x)dx=ab[f(x)+g(x)]dx\int\limits_{a}^{b}{f\left( x \right)dx}+\int\limits_{a}^{b}{g\left( x \right)dx}=\int\limits_{a}^{b}{\left[ f\left( x \right)+g\left( x \right) \right]dx}.
So, 2I=0πx1+sinxdx+0ππx1+sinxdx=0πx+πx1+sinxdx=0ππ1+sinxdx2I=\int\limits_{0}^{\pi }{\dfrac{x}{1+\sin x}dx}+\int\limits_{0}^{\pi }{\dfrac{\pi -x}{1+\sin x}dx}=\int\limits_{0}^{\pi }{\dfrac{x+\pi -x}{1+\sin x}dx}=\int\limits_{0}^{\pi }{\dfrac{\pi }{1+\sin x}dx}.
The integral becomes

& 2I=\int\limits_{0}^{\pi }{\dfrac{\pi }{1+\sin x}dx} \\\ & \Rightarrow I=\dfrac{\pi }{2}\int\limits_{0}^{\pi }{\dfrac{dx}{1+\sin x}} \\\ \end{aligned}$$ We again apply the theorem $\int\limits_{0}^{2a}{f\left( x \right)dx}=2\int\limits_{0}^{a}{f\left( x \right)dx}$ if $f\left( 2a-x \right)=f\left( x \right)$. In our integral if we assume $${{I}_{1}}=\int\limits_{0}^{\pi }{\dfrac{dx}{1+\sin x}}$$, we have $\sin \left( \pi -x \right)=\sin x$. So, $${{I}_{1}}=\int\limits_{0}^{\pi }{\dfrac{dx}{1+\sin x}}=2\int\limits_{0}^{\dfrac{\pi }{2}}{\dfrac{dx}{1+\sin x}}$$ which means $$I=\dfrac{\pi }{2}{{I}_{1}}=\pi \int\limits_{0}^{\dfrac{\pi }{2}}{\dfrac{dx}{1+\sin x}}$$. We multiply with $1-\sin x$ to both numerator and denominator and get $$I=\pi \int\limits_{0}^{\dfrac{\pi }{2}}{\dfrac{dx}{1+\sin x}}=\pi \int\limits_{0}^{\dfrac{\pi }{2}}{\dfrac{\left( 1-\sin x \right)}{\left( 1+\sin x \right)\left( 1-\sin x \right)}}dx=\pi \int\limits_{0}^{\dfrac{\pi }{2}}{\dfrac{\left( 1-\sin x \right)}{{{\cos }^{2}}x}}dx$$. Now we use the trigonometric identities and find the integral as $$I=\pi \int\limits_{0}^{\dfrac{\pi }{2}}{\left( {{\sec }^{2}}x-\tan x\sec x \right)}dx$$. We now use the integral theorem of trigo ratios. $$\begin{aligned} & I=\pi \int\limits_{0}^{\dfrac{\pi }{2}}{\left( {{\sec }^{2}}x-\tan x\sec x \right)}dx \\\ & \Rightarrow \pi \left[ \tan x-\sec x \right]_{0}^{\dfrac{\pi }{2}} \\\ & \Rightarrow \pi \left[ \left( \tan \dfrac{\pi }{2}-\tan 0 \right)-\left( \sec \dfrac{\pi }{2}-\sec 0 \right) \right] \\\ & \Rightarrow \pi \left[ \left( \tan \dfrac{\pi }{2}-\tan 0 \right)-\left( \sec \dfrac{\pi }{2}-\sec 0 \right) \right] \\\ & \Rightarrow \pi \\\ \end{aligned}$$ So, the integral value of $\int\limits_{0}^{\pi }{\dfrac{x}{1+\sin x}dx}$ is $\pi $. **Note:** In the last part of the integral we had terms like $$\tan \dfrac{\pi }{2}$$ and $$\sec \dfrac{\pi }{2}$$ which have no exact value as they tends to infinity as they approach $\dfrac{\pi }{2}$. But the value of them gets similar as $x\to \dfrac{\pi }{2}$. That’s why we can eliminate them.