Question
Question: Using properties of integral evaluate: \(\int\limits_{0}^{\pi }{\dfrac{x}{1+\sin x}dx}\)....
Using properties of integral evaluate: 0∫π1+sinxxdx.
Solution
The given definite integral requires two different theorems to narrow it down to its simplest form. We apply 0∫af(x)dx=0∫af(a−x)dx and 0∫2af(x)dx=20∫af(x)dx to remove the x component from the numerator part. Then we use trigo integral form to find the solution of the problem.
Complete step-by-step solution
We have been given a definite integral. We assume I=0∫π1+sinxxdx.
We have the theorem of definite integral 0∫af(x)dx=0∫af(a−x)dx.
For our given integral a=π,f(x)=1+sinxx.
We try to find the value of f(a−x)=f(π−x)=1+sin(π−x)π−x=1+sinxπ−x.
So, I=0∫π1+sinxxdx=0∫π1+sinxπ−xdx.
We add these two integrals to remove the x in the numerator of the integral.
We have the theorem a∫bf(x)dx+a∫bg(x)dx=a∫b[f(x)+g(x)]dx.
So, 2I=0∫π1+sinxxdx+0∫π1+sinxπ−xdx=0∫π1+sinxx+π−xdx=0∫π1+sinxπdx.
The integral becomes