Solveeit Logo

Question

Question: Using properties of determinants prove the following – \(\left| \begin{matrix} 3x & -x+y & -x...

Using properties of determinants prove the following –
3xx+yx+z xy3yzy xzyz3z \left| \begin{matrix} 3x & -x+y & -x+z \\\ x-y & 3y & z-y \\\ x-z & y-z & 3z \\\ \end{matrix} \right| =3(x+y+z)(xy+yz+xz)=3\left( x+y+z \right)(xy+yz+xz)

Explanation

Solution

Try to make whole column or a row with elements (x+y+z)(x+y+z) or (xy+yz+xz)(xy+yz+xz) and take it common from the determinant , so that you can easily reach Right Hand Side of the equality that we have to proof , then solve the determinant and get the desired equality.

Complete step by step answer:
Consider the Left Hand Side of the equality that we have to proof ,
3xx+yx+z xy3yzy xzyz3z \left| \begin{matrix} 3x & -x+y & -x+z \\\ x-y & 3y & z-y \\\ x-z & y-z & 3z \\\ \end{matrix} \right|Now, we will try to make a whole row or a column (x+y+z)(x+y+z) ,
So, for this we will use column operation ,
Since, we know the property of determinants that row or column operations don’t affect the determinant of a matrix , so we can use the column operation without any problem.
Notice when we add the columns 2 and 3 to column 1 , the whole column 1 gets the same element ,
(x+y+z)(x+y+z)
C1C1+C2+C3{{C}_{1}}\to {{C}_{1}}+{{C}_{2}}+{{C}_{3}}
By performing this operation, we get,
x+y+zx+yx+z x+y+z3yzy x+y+zyz3z \left| \begin{matrix} x+y+z & -x+y & -x+z \\\ x+y+z & 3y & z-y \\\ x+y+z & y-z & 3z \\\ \end{matrix} \right|
Now, take common (x+y+z)(x+y+z) from first column, we get
=(x+y+z)1x+yx+z 13yzy 1yz3z =(x+y+z)\left| \begin{matrix} 1 & -x+y & -x+z \\\ 1 & 3y & z-y \\\ 1 & y-z & 3z \\\ \end{matrix} \right|
Now, we will perform the row operations , so that in next step , we can easily evaluate the determinant,
R2R2R1 R3R3R1 \begin{aligned} & {{R}_{2}}\to {{R}_{2}}-{{R}_{1}} \\\ & {{R}_{3}}\to {{R}_{3}}-{{R}_{1}} \\\ \end{aligned}
By performing these 2 operations we get 1 element of row 2 and 3 as 0 , and so it will ease the process of evaluating the determinant. So, by performing these operations , we get
=(x+y+z)1x+2yx+z 02y+xy+x 0z+x2z+x =(x+y+z)\left| \begin{matrix} 1 & x+2y & -x+z \\\ 0 & 2y+x & -y+x \\\ 0 & -z+x & 2z+x \\\ \end{matrix} \right|
=(x+y+z)((2z+x)(2y+x)(y+x)(z+x) =(x+y+z)(4yz+2xz+2xy+x2(yzxyzx+x2)) =(x+y+z)(3yz+3xy+3xz) =3(x+y+z)(xy+yz+xz)\begin{aligned} & =(x+y+z)((2z+x)(2y+x)-(-y+x)(-z+x) \\\ & =(x+y+z)(4yz+2xz+2xy+{{x}^{2}}-(yz-xy-zx+{{x}^{2}})) \\\ & =(x+y+z)(3yz+3xy+3xz) \\\ & =3(x+y+z)(xy+yz+xz) \end{aligned}

Hence, 3xx+yx+z xy3yzy xzyz3z \left| \begin{matrix} 3x & -x+y & -x+z \\\ x-y & 3y & z-y \\\ x-z & y-z & 3z \\\ \end{matrix} \right| =3(x+y+z)(xy+yz+xz)=3\left( x+y+z \right)(xy+yz+xz)

Note: The possibility of mistake here is that when you perform row or column operations , you don’t need anything to compensate like in the operation R2R2R1{{R}_{2}}\to {{R}_{2}}-{{R}_{1}} you don’t need to divide by -1 . Row or column operations don’t affect the determinants.