Solveeit Logo

Question

Question: Using properties of determinants, prove that: \(\left| \begin{matrix} {{a}^{2}}+2a & 2a+1 & ...

Using properties of determinants, prove that:
a2+2a2a+11 2a+1a+21 331 =(a1)3\left| \begin{matrix} {{a}^{2}}+2a & 2a+1 & 1 \\\ 2a+1 & a+2 & 1 \\\ 3 & 3 & 1 \\\ \end{matrix} \right|={{\left( a-1 \right)}^{3}}

Explanation

Solution

Hint: For solving this question we will perform elementary row operations in the given square matrix to get the determinant value of the matrix to prove the result.

Complete step-by-step answer:
Given:
We have a square matrix [a2+2a2a+11 2a+1a+21 331 ]\left[ \begin{matrix} {{a}^{2}}+2a & 2a+1 & 1 \\\ 2a+1 & a+2 & 1 \\\ 3 & 3 & 1 \\\ \end{matrix} \right] .
We will use the following formula of determinant to find the determinant value:
A=a11a12a13 a21a22a23 a31a32a33  A=a11(a22a33a23a32)+a12(a23a31a21a33)+a13(a21a32a22a31) \begin{aligned} & \left| A \right|=\left| \begin{matrix} {{a}_{11}} & {{a}_{12}} & {{a}_{13}} \\\ {{a}_{21}} & {{a}_{22}} & {{a}_{23}} \\\ {{a}_{31}} & {{a}_{32}} & {{a}_{33}} \\\ \end{matrix} \right| \\\ & \Rightarrow \left| A \right|={{a}_{11}}\left( {{a}_{22}}{{a}_{33}}-{{a}_{23}}{{a}_{32}} \right)+{{a}_{12}}\left( {{a}_{23}}{{a}_{31}}-{{a}_{21}}{{a}_{33}} \right)+{{a}_{13}}\left( {{a}_{21}}{{a}_{32}}-{{a}_{22}}{{a}_{31}} \right) \\\ \end{aligned}
Now, first, we will perform the elementary row operations on the given matrix to reduce it into a form in which we will have two zero elements in the same column or same row.
Elementary row operations:
1. The given matrix is [a2+2a2a+11 2a+1a+21 331 ]\left[ \begin{matrix} {{a}^{2}}+2a & 2a+1 & 1 \\\ 2a+1 & a+2 & 1 \\\ 3 & 3 & 1 \\\ \end{matrix} \right] .
2. Now, subtract the second row from the first row then, the matrix will become, [a21a10 2a+1a+21 331 ]\left[ \begin{matrix} {{a}^{2}}-1 & a-1 & 0 \\\ 2a+1 & a+2 & 1 \\\ 3 & 3 & 1 \\\ \end{matrix} \right] .
3. Now, subtract the third row from the second row then, the matrix will become, [a21a10 2a2a10 331 ] [(a1)(a+1)a10 2(a1)a10 331 ] \begin{aligned} & \left[ \begin{matrix} {{a}^{2}}-1 & a-1 & 0 \\\ 2a-2 & a-1 & 0 \\\ 3 & 3 & 1 \\\ \end{matrix} \right] \\\ & \Rightarrow \left[ \begin{matrix} \left( a-1 \right)\left( a+1 \right) & a-1 & 0 \\\ 2\left( a-1 \right) & a-1 & 0 \\\ 3 & 3 & 1 \\\ \end{matrix} \right] \\\ \end{aligned}
4. Now, subtract the second row from the first row then, the matrix will become,
[(a1)(a+1)2(a1)(a1)(a1)0 2(a1)a10 331 ] [(a1)(a+12)00 2(a1)a10 331 ] [(a1)(a1)00 2(a1)a10 331 ] \begin{aligned} & \left[ \begin{matrix} \left( a-1 \right)\left( a+1 \right)-2\left( a-1 \right) & \left( a-1 \right)-\left( a-1 \right) & 0 \\\ 2\left( a-1 \right) & a-1 & 0 \\\ 3 & 3 & 1 \\\ \end{matrix} \right] \\\ & \Rightarrow \left[ \begin{matrix} \left( a-1 \right)\left( a+1-2 \right) & 0 & 0 \\\ 2\left( a-1 \right) & a-1 & 0 \\\ 3 & 3 & 1 \\\ \end{matrix} \right] \\\ & \Rightarrow \left[ \begin{matrix} \left( a-1 \right)\left( a-1 \right) & 0 & 0 \\\ 2\left( a-1 \right) & a-1 & 0 \\\ 3 & 3 & 1 \\\ \end{matrix} \right] \\\ \end{aligned}
Now, we got a matrix [(a1)(a1)00 2(a1)a10 331 ]\left[ \begin{matrix} \left( a-1 \right)\left( a-1 \right) & 0 & 0 \\\ 2\left( a-1 \right) & a-1 & 0 \\\ 3 & 3 & 1 \\\ \end{matrix} \right] . As we know that when we perform either elementary row operations or elementary column operation the determinant value of the matrix won’t change. So, we will now calculate the determinant value of [(a1)(a1)00 2(a1)a10 331 ]\left[ \begin{matrix} \left( a-1 \right)\left( a-1 \right) & 0 & 0 \\\ 2\left( a-1 \right) & a-1 & 0 \\\ 3 & 3 & 1 \\\ \end{matrix} \right] . Then,
[(a1)(a1)00 2(a1)a10 331 ] 1×[(a1)(a1)×(a1)] (a1)3 \begin{aligned} & \left| \left[ \begin{matrix} \left( a-1 \right)\left( a-1 \right) & 0 & 0 \\\ 2\left( a-1 \right) & a-1 & 0 \\\ 3 & 3 & 1 \\\ \end{matrix} \right] \right| \\\ & \Rightarrow 1\times \left[ \left( a-1 \right)\left( a-1 \right)\times \left( a-1 \right) \right] \\\ & \Rightarrow {{\left( a-1 \right)}^{3}} \\\ \end{aligned}
Thus, from the above calculation of the determinant value of the matrix, we can say that the determinant value of the given matrix is (a1)3{{\left( a-1 \right)}^{3}} .
a2+2a2a+11 2a+1a+21 331 =(a1)3\left| \begin{matrix} {{a}^{2}}+2a & 2a+1 & 1 \\\ 2a+1 & a+2 & 1 \\\ 3 & 3 & 1 \\\ \end{matrix} \right|={{\left( a-1 \right)}^{3}}
Hence, proved.

Note: Here, the student should not directly apply the determinant formulae for the 3×33\times 3 square matrix to prove the result before applying the elementary row operations. That would be a very wrong approach as it is mentioned in the question that we have to use the properties of determinants to prove the result.