Solveeit Logo

Question

Mathematics Question on Determinants

Using properties of determinants, prove that:
αα2β+γ ββ2γ+α γγ2α+β\begin{vmatrix} \alpha &\alpha^2 &\beta+\gamma \\\ \beta&\beta^2 &\gamma+\alpha \\\ \gamma&\gamma^2 &\alpha+\beta \end{vmatrix}=(βγ\beta-\gamma)( γα\gamma-\alpha)(αβ\alpha-\beta)(α+β+γ\alpha+\beta+\gamma)

Answer

Δ=αα2β+γ ββ2γ+α γγ2α+β\begin{vmatrix} \alpha &\alpha^2 &\beta+\gamma \\\ \beta&\beta^2 &\gamma+\alpha \\\ \gamma&\gamma^2 &\alpha+\beta \end{vmatrix}
Applying R2\rightarrowR2-R1 and R3\rightarrowR3-R1,we have
=αα2β+γ β+αβ2α2α+β γαγ2α2αγ\begin{vmatrix} \alpha &\alpha^2 &\beta+\gamma \\\ \beta+\alpha&\beta^2-\alpha^2 &\alpha+\beta \\\ \gamma-\alpha&\gamma^2-\alpha^2 &\alpha-\gamma \end{vmatrix}

Applying R3\rightarrowR3-R2, we have:
Δ=(β-α)(γ-α)αα2β+γ 1β+α1 0γβ0\begin{vmatrix} \alpha &\alpha^2 &\beta+\gamma \\\ 1&\beta+\alpha &-1 \\\ 0&\gamma-\beta &0 \end{vmatrix}

Expanding along R3,we have:
Δ=(β-α)(γ-α)[-(γ-β)(-α-β-γ)]
=(β-α)(γ-α)(γ-β)(α+β+γ)
=(β-γ)( γ-α)(α-β)(α+β+γ)

Hence,the given result is proved.