Question
Mathematics Question on Determinants
Using properties of determinants,prove that:
sinα sinβ sinγcosαcosβcosγcos(α+δ)cos(β+δ)cos(γ+δ)=0
Answer
Δ$$\begin{vmatrix}sinα& cosα& cos(α+δ)\\\ sinβ& cosβ& cos(β+δ)\\\ sinγ& cosγ& cos(γ+δ)\end{vmatrix}
=sinδcosδ1sinαsinδ sinβsinδ sinγsinδcosαcosδcosβcosδcosγcosδcosαcosδ−sinαsinδcosβcosδ−sinβsinδcosγcosδ−sinγsinδ
Applying C1→C1+C3,we have
Δ=sinδcosδ1cosαcosδ cosβcosδ cosγcosδcosαcosδcosβcosδcosγcosδcosαcosδ−sinαsinδcosβcosδ−sinβsinδcosγcosδ−sinγsinδ
Here two columns C1 and C2 are identical
∴Δ=0
Hence,the given result is proved.