Solveeit Logo

Question

Mathematics Question on Determinants

Using properties of determinants,prove that:
sinαcosαcos(α+δ) sinβcosβcos(β+δ) sinγcosγcos(γ+δ)=0\begin{vmatrix}sinα& cosα& cos(α+δ)\\\ sinβ& cosβ& cos(β+δ)\\\ sinγ& cosγ& cos(γ+δ)\end{vmatrix}=0

Answer

Δ$$\begin{vmatrix}sinα& cosα& cos(α+δ)\\\ sinβ& cosβ& cos(β+δ)\\\ sinγ& cosγ& cos(γ+δ)\end{vmatrix}
=1sinδcosδsinαsinδcosαcosδcosαcosδsinαsinδ sinβsinδcosβcosδcosβcosδsinβsinδ sinγsinδcosγcosδcosγcosδsinγsinδ=\frac{1}{sinδcosδ}\begin{vmatrix}sinαsinδ& cosαcosδ& cosαcosδ-sinαsinδ\\\ sinβsinδ& cosβcosδ& cosβcosδ-sinβsinδ\\\ sinγsinδ& cosγcosδ& cosγcosδ-sinγsinδ\end{vmatrix}
Applying C1C1+C3C_1→C_1+C_3,we have
Δ=1sinδcosδcosαcosδcosαcosδcosαcosδsinαsinδ cosβcosδcosβcosδcosβcosδsinβsinδ cosγcosδcosγcosδcosγcosδsinγsinδΔ=\frac{1}{sinδcosδ}\begin{vmatrix}cosαcosδ& cosαcosδ& cosαcosδ-sinαsinδ\\\ cosβcosδ& cosβcosδ& cosβcosδ-sinβsinδ\\\ cosγcosδ& cosγcosδ& cosγcosδ-sinγsinδ\end{vmatrix}
Here two columns C1C_1 and C2C_2 are identical
Δ=0∴Δ=0
Hence,the given result is proved.