Question
Mathematics Question on Determinants
Using properties of determinants,prove that:
\begin{vmatrix} 3a& -a+b & -a+c\\\ -b+a & 3b & -b+c \\\\-c+a&-c+b&3c\end{vmatrix}$$=3(a+b+c)(ab+bc+ca)
Answer
Δ=$$\begin{vmatrix} 3a& -a+b & -a+c\\\ -b+a & 3b & -b+c \\\\-c+a&-c+b&3c\end{vmatrix}
Applying C1→C1+C2+C3,we have
=a+b+c a+b+c\a+b+c−a+b3b−c+b−a+c−b+c3c
=(a+b+c)$$\begin{vmatrix} 1& -a+b & -a+c\\\ 1 & 3b & -b+c \\\1&-c+b&3c\end{vmatrix}
Applying R2→R2−R1, andR3→R3−R1we have:
Δ=(a+b+c)$$\begin{vmatrix} 1& -a+b & -a+c\\\ 0 & 2b+a & a-b \\\0&a-c&2c+a\end{vmatrix}
Expanding along C1,we have:
Δ=(a+b+c)[(2b+a)(2c+a)−(a−b)(a−c)]
=(a+b+c)[4bc+2ab+2ac+a2−a2+ac+ba−bc]
=(a+b+c)(3ab+3bc+3ac)
=3(a+b+c)(ab+bc+ca)
Hence,the given result is proved.