Solveeit Logo

Question

Mathematics Question on Determinants

Using properties of determinants,prove that:
11+p1+p+q 23+2p4+3p+2q 36+3p10+6p+3q=1\begin{vmatrix}1& 1+p& 1+p+q\\\ 2& 3+2p& 4+3p+2q\\\ 3& 6+3p& 10+6p+3q\end{vmatrix}=1

Answer

=11+p1+p+q 23+2p4+3p+2q 36+3p10+6p+3q\triangle=\begin{vmatrix}1& 1+p& 1+p+q\\\ 2& 3+2p& 4+3p+2q\\\ 3& 6+3p& 10+6p+3q\end{vmatrix}
Applying R2R22R1R_2→R_2-2R_1 and R3→R3-3R1R3R33R1R_3→R_3-3R_1,we have
=11+p1+p+q 012+p 037+3p\triangle=\begin{vmatrix}1& 1+p& 1+p+q\\\ 0& 1& 2+p\\\ 0& 3& 7+3p\end{vmatrix}
Applying R3R33R2R_3→R_3-3R_2 we have:
Δ=11+p1+p+q 012+p 001Δ=\begin{vmatrix}1& 1+p& 1+p+q\\\ 0& 1& 2+p\\\ 0& 0& 1\end{vmatrix}
Expanding along C1C_1,we have:
Δ=112+p 01=1(10)=1Δ=1\begin{vmatrix}1& 2+p\\\ 0& 1\end{vmatrix}=1(1-0)=1
Hence,the given result is proved.