Question
Mathematics Question on Determinants
Using properties of determinants,prove that:
\begin{vmatrix} x & x^2 & 1+px^3\\\ y & y^2 & 1+py^3\\\z&z^2&1+pz^3 \end{vmatrix}$$=(1+pxyz)(x-y)(y-z)(z-x)
Δ=$$\begin{vmatrix} x & x^2 & 1+px^3\\\ y & y^2 & 1+py^3\\\z&z^2&1+pz^3 \end{vmatrix}
Applying R2→R2−R1 and R3→R3−R1,we have
=x y−x\z−xx2y2−x2z2−x21+px3p(y3−x3)p(z3−x3)
=(y-x)(z-x)$$\begin{vmatrix} x & x^2 & 1+px^3\\\ 1 & y+x & p(y^2+x^2+xy)\\\1&z+x&p(z^2+x^2+xz)\end{vmatrix}
Applying R3→R3−R2,we have:
Δ=(y-x)(z-x)$$\begin{vmatrix} x & x^2 & 1+px^3\\\ 1& y+x & p(y^2+x^2+xy)\\\0&z-y&p(z-y)(x+y+z)\end{vmatrix}
=(y-x)(z-x)(z-y)$$\begin{vmatrix} x & x^2 & 1+px^3\\\ 1& y+x & p(y^2+x^2+xy)\\\0&1&p(x+y+z)\end{vmatrix}
Expanding along R3,we have:
Δ=(x−y)(y−z)(z−x)[(−1)(p)(xy2+x3+x2y)+1+px3+p(x+y+z)(xy)]
=(x−y)(y−z)(z−x)[−pxy2−px3−px2y+1+px3+px2y+pxy2+pxyz]
=(x−y)(y−z)(z−x)(1+pxyz)
Hence,the given result is proved.