Solveeit Logo

Question

Question: Using properties of determinant, prove that: \(\left| \begin{matrix} 1+a & 1 & 1 \\\ 1 & 1...

Using properties of determinant, prove that: 1+a11 11+b1 111+c = abc + ab + ac + bc\left| \begin{matrix} 1+a & 1 & 1 \\\ 1 & 1+b & 1 \\\ 1 & 1 & 1+c \\\ \end{matrix} \right|=\text{ }abc\text{ }+\text{ }ab\text{ }+\text{ }ac\text{ }+\text{ }bc

Explanation

Solution

To solve this determinant, what we will do is firstly, we will take factor a common from R1{{R}_{1}} , b common from R2{{R}_{2}}and c common from R3{{R}_{3}}, then we will use row and column elementary transformation to solve the determinant.

Complete step by step answer:
Now, before we start solving the questions, let us see how we calculate determinant -
a11a12a13 a21a22a23 a31a32a33 =a11(a22a33a32a23)a21(a12a33a32a13)+a31(a23a12a22a13)\left| \begin{matrix} {{a}_{11}} & {{a}_{12}} & {{a}_{13}} \\\ {{a}_{21}} & {{a}_{22}} & {{a}_{23}} \\\ {{a}_{31}} & {{a}_{32}} & {{a}_{33}} \\\ \end{matrix} \right|={{a}_{11}}({{a}_{22}}{{a}_{33}}-{{a}_{32}}{{a}_{23}})-{{a}_{21}}({{a}_{12}}{{a}_{33}}-{{a}_{32}}{{a}_{13}})+{{a}_{31}}({{a}_{23}}{{a}_{12}}-{{a}_{22}}{{a}_{13}})
Some of the properties of determinant are as follows,
( a ) Determinant evaluated across any row or column is the same.
( b ) If all the elements of a row or a column are zeros, then the value of the determinant is equal to zero.
( c ) If rows and columns are interchanged then the value of the determinant remains the same.
( d ) Determinant of an identity matrix is 1.
Now, let us move to question now, it is asked to prove that 1+a11 11+b1 111+c = abc + ab + ac + bc\left| \begin{matrix} 1+a & 1 & 1 \\\ 1 & 1+b & 1 \\\ 1 & 1 & 1+c \\\ \end{matrix} \right|=\text{ }abc\text{ }+\text{ }ab\text{ }+\text{ }ac\text{ }+\text{ }bc
So, this can be proved by solving determinant across any row or column, as the value of the determinant will be the same.
Now, we can write 1+a11 11+b1 111+c \left| \begin{matrix} 1+a & 1 & 1 \\\ 1 & 1+b & 1 \\\ 1 & 1 & 1+c \\\ \end{matrix} \right|, as
1+a11 11+b1 111+c =abc1a+11a1a 1b1b+11b 1c1c1c+1 \left| \begin{matrix} 1+a & 1 & 1 \\\ 1 & 1+b & 1 \\\ 1 & 1 & 1+c \\\ \end{matrix} \right|=abc\left| \begin{matrix} \dfrac{1}{a}+1 & \dfrac{1}{a} & \dfrac{1}{a} \\\ \dfrac{1}{b} & \dfrac{1}{b}+1 & \dfrac{1}{b} \\\ \dfrac{1}{c} & \dfrac{1}{c} & \dfrac{1}{c}+1 \\\ \end{matrix} \right|, where we took a common from R1{{R}_{1}} , b common from R2{{R}_{2}}and c common from R3{{R}_{3}}.
Now, using elementary row operation R1R1+R2+R3{{R}_{1}}\to {{R}_{1}}+{{R}_{2}}+{{R}_{3}} , we get
=abc1a+1b+1c+11a+1b+1c+11a+1b+1c+1 1b1b+11b 1c1c1c+1 =abc\left| \begin{matrix} \dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}+1 & \dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}+1 & \dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}+1 \\\ \dfrac{1}{b} & \dfrac{1}{b}+1 & \dfrac{1}{b} \\\ \dfrac{1}{c} & \dfrac{1}{c} & \dfrac{1}{c}+1 \\\ \end{matrix} \right|
Taking 1a+1b+1c+1\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}+1common from R1{{R}_{1}}, we get
=abc(1a+1b+1c+1)111 1b1b+11b 1c1c1c+1 =abc\left( \dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}+1 \right)\left| \begin{matrix} 1 & 1 & 1 \\\ \dfrac{1}{b} & \dfrac{1}{b}+1 & \dfrac{1}{b} \\\ \dfrac{1}{c} & \dfrac{1}{c} & \dfrac{1}{c}+1 \\\ \end{matrix} \right|
Using, C2C2C1{{C}_{2}}\to {{C}_{2}}-{{C}_{1}} and C3C3C1{{C}_{3}}\to {{C}_{3}}-{{C}_{1}}, we get
=abc(1a+1b+1c+1)100 1b10 1c01 =abc\left( \dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}+1 \right)\left| \begin{matrix} 1 & 0 & 0 \\\ \dfrac{1}{b} & 1 & 0 \\\ \dfrac{1}{c} & 0 & 1 \\\ \end{matrix} \right|
Expanding determinant along R1{{R}_{1}}, we get
=abc(1a+1b+1c+1)[1(10)0(1b01c)+0(01b11c)]=abc\left( \dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}+1 \right)\left[ 1(1-0)-0\left( \dfrac{1}{b}-0\cdot \dfrac{1}{c} \right)+0\left( 0\cdot \dfrac{1}{b}-1\cdot \dfrac{1}{c} \right) \right]
On simplifying, we get
=abc(1a+1b+1c+1)[10+0]=abc\left( \dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}+1 \right)\left[ 1-0+0 \right]
=abc(1a+1b+1c+1)=abc\left( \dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}+1 \right)
On solving, we get
=abc + ab + ac + bc=abc\text{ }+\text{ }ab\text{ }+\text{ }ac\text{ }+\text{ }bc

Hence, determinant 1+a11 11+b1 111+c = abc + ab + ac + bc\left| \begin{matrix} 1+a & 1 & 1 \\\ 1 & 1+b & 1 \\\ 1 & 1 & 1+c \\\ \end{matrix} \right|=\text{ }abc\text{ }+\text{ }ab\text{ }+\text{ }ac\text{ }+\text{ }bc

Note: It is very important to know how to solve determinant using it’s properties so knowledge of properties of determinant should be a priority. In determinant we can use both column and row elementary transformation. Calculation should be done carefully while solving determinant problems.