Solveeit Logo

Question

Question: Using MOT, If bond order of $O_2$ = a Bond order of $N_2^+$ = b then find the value of (a + b)...

Using MOT, If bond order of O2O_2 = a Bond order of N2+N_2^+ = b then find the value of (a + b)

Answer

4.5

Explanation

Solution

To find the value of (a + b), we first need to calculate the bond order of O2O_2 (denoted as 'a') and the bond order of N2+N_2^+ (denoted as 'b') using Molecular Orbital Theory (MOT).

  1. Bond order of O2O_2 (a):
    The total number of electrons in O2O_2 is 8+8=168 + 8 = 16.
    The molecular orbital configuration for molecules with more than 14 electrons (like O2O_2) is:
    σ(1s)2σ(1s)2σ(2s)2σ(2s)2σ(2pz)2π(2px)2π(2py)2π(2px)1π(2py)1\sigma(1s)^2 \sigma^*(1s)^2 \sigma(2s)^2 \sigma^*(2s)^2 \sigma(2p_z)^2 \pi(2p_x)^2 \pi(2p_y)^2 \pi^*(2p_x)^1 \pi^*(2p_y)^1
    Number of bonding electrons (NbN_b) = 2+2+2+2+2=102 + 2 + 2 + 2 + 2 = 10
    Number of anti-bonding electrons (NaN_a) = 2+2+1+1=62 + 2 + 1 + 1 = 6
    Bond order of O2O_2 (a) = 12(NbNa)=12(106)=12(4)=2\frac{1}{2}(N_b - N_a) = \frac{1}{2}(10 - 6) = \frac{1}{2}(4) = 2.
    So, a = 2.

  2. Bond order of N2+N_2^+ (b):
    The total number of electrons in N2N_2 is 7+7=147 + 7 = 14.
    N2+N_2^+ has lost one electron, so the total number of electrons is 141=1314 - 1 = 13.
    The molecular orbital configuration for molecules with 14 or fewer electrons (like N2+N_2^+) has a different order of energy levels for the 2p orbitals compared to molecules with more than 14 electrons. The order is π(2px)=π(2py)<σ(2pz)\pi(2p_x) = \pi(2p_y) < \sigma(2p_z).
    The molecular orbital configuration for N2+N_2^+ (13 electrons) is:
    σ(1s)2σ(1s)2σ(2s)2σ(2s)2π(2px)2π(2py)2σ(2pz)1\sigma(1s)^2 \sigma^*(1s)^2 \sigma(2s)^2 \sigma^*(2s)^2 \pi(2p_x)^2 \pi(2p_y)^2 \sigma(2p_z)^1
    Number of bonding electrons (NbN_b) = 2+2+2+2+1=92 + 2 + 2 + 2 + 1 = 9
    Number of anti-bonding electrons (NaN_a) = 2+2=42 + 2 = 4
    Bond order of N2+N_2^+ (b) = 12(NbNa)=12(94)=12(5)=2.5\frac{1}{2}(N_b - N_a) = \frac{1}{2}(9 - 4) = \frac{1}{2}(5) = 2.5.
    So, b = 2.5.

  3. Calculate (a + b):
    a + b = 2 + 2.5 = 4.5.