Solveeit Logo

Question

Question: Using matrix method, solve the following system of equations: \(x-2y=10;2x+y+3z=8;-2y+z=7\)...

Using matrix method, solve the following system of equations:
x2y=10;2x+y+3z=8;2y+z=7x-2y=10;2x+y+3z=8;-2y+z=7

Explanation

Solution

We first try to form the matrices of the equations. We have three matrices coefficient, variable, solution matrices. We use the inverse of the coefficient matrix to multiply with the solution matrix to form the relation X=A1BX={{A}^{-1}}B from AX=BAX=B. We equate corresponding elements to find the variables.

Complete step-by-step answer:
We express this given three equations of three unknowns x, y, z in the form of matrices.
There will be three matrices. Matrix A being the coefficient matrix, matrix X is the variable matrix and B is the solution matrix.
We first form every given equation for all variables.
x2y+0z=10;2x+y+3z=8;0x2y+z=7x-2y+0z=10;2x+y+3z=8;0x-2y+z=7.
We now form the coefficient matrix as A=[120 213 021 ]A=\left[ \begin{matrix} 1 & -2 & 0 \\\ 2 & 1 & 3 \\\ 0 & -2 & 1 \\\ \end{matrix} \right].
The variable and the solution matrices are X=[x y z ];B=[10 8 7 ]X=\left[ \begin{matrix} x \\\ y \\\ z \\\ \end{matrix} \right];B=\left[ \begin{matrix} 10 \\\ 8 \\\ 7 \\\ \end{matrix} \right].
The matrix multiplication form for the matrices is AX=BAX=B.
Now we perform matrix inverse to get the value of matrix X as X=A1BX={{A}^{-1}}B.
We need to find the inverse of matrix A. we define A\left| A \right| as the determinant of the matrix A.
We know that A1=adj(A)A{{A}^{-1}}=\dfrac{adj\left( A \right)}{\left| A \right|}, where adj(A)adj\left( A \right) defines the matrix adj(A)=[Aji]adj\left( A \right)=\left[ {{A}_{ji}} \right] for the matrix A=[aij]A=\left[ {{a}_{ij}} \right]. aij{{a}_{ij}} are the elements of ith{{i}^{th}} row and jth{{j}^{th}} column. Aji{{A}_{ji}} represents the cofactors of aij{{a}_{ij}}. Basically, we are taking the cofactors and taking transpose of that matrix.
For a11=1{{a}_{11}}=1, the cofactor will be 13 21 =1+6=7\left| \begin{matrix} 1 & 3 \\\ -2 & 1 \\\ \end{matrix} \right|=1+6=7.
For a12=2{{a}_{12}}=-2, the cofactor will be 23 01 =(20)=2-\left| \begin{matrix} 2 & 3 \\\ 0 & 1 \\\ \end{matrix} \right|=-\left( 2-0 \right)=-2.
For a13=0{{a}_{13}}=0, the cofactor will be 21 02 =40=4\left| \begin{matrix} 2 & 1 \\\ 0 & -2 \\\ \end{matrix} \right|=-4-0=-4.
For a21=2{{a}_{21}}=2, the cofactor will be 20 21 =(20)=2-\left| \begin{matrix} -2 & 0 \\\ -2 & 1 \\\ \end{matrix} \right|=-\left( -2-0 \right)=2.
For a22=1{{a}_{22}}=1, the cofactor will be 10 01 =10=1\left| \begin{matrix} 1 & 0 \\\ 0 & 1 \\\ \end{matrix} \right|=1-0=1.
For a23=3{{a}_{23}}=3, the cofactor will be 12 02 =(20)=2\left| \begin{matrix} 1 & -2 \\\ 0 & -2 \\\ \end{matrix} \right|=-\left( -2-0 \right)=2.
For a31=0{{a}_{31}}=0, the cofactor will be 20 13 =60=6\left| \begin{matrix} -2 & 0 \\\ 1 & 3 \\\ \end{matrix} \right|=-6-0=-6.
For a32=2{{a}_{32}}=-2, the cofactor will be 10 23 =(30)=3\left| \begin{matrix} 1 & 0 \\\ 2 & 3 \\\ \end{matrix} \right|=-\left( 3-0 \right)=-3.
For a33=1{{a}_{33}}=1, the cofactor will be 12 21 =1+4=5\left| \begin{matrix} 1 & -2 \\\ 2 & 1 \\\ \end{matrix} \right|=1+4=5.
So, adj(A)=[Aji]=[724 212 635 ]T=[726 213 425 ]adj\left( A \right)=\left[ {{A}_{ji}} \right]={{\left[ \begin{matrix} 7 & -2 & -4 \\\ 2 & 1 & 2 \\\ -6 & -3 & 5 \\\ \end{matrix} \right]}^{T}}=\left[ \begin{matrix} 7 & 2 & -6 \\\ -2 & 1 & -3 \\\ -4 & 2 & 5 \\\ \end{matrix} \right].
Now expanding through the first row, we get the determinant value as A=(1+6)2(02)+0(40)=11\left| A \right|=\left( 1+6 \right)-2\left( 0-2 \right)+0\left( -4-0 \right)=11.
Therefore, A1=adj(A)A=111[726 213 425 ]{{A}^{-1}}=\dfrac{adj\left( A \right)}{\left| A \right|}=\dfrac{1}{11}\left[ \begin{matrix} 7 & 2 & -6 \\\ -2 & 1 & -3 \\\ -4 & 2 & 5 \\\ \end{matrix} \right]. We multiply it with B to get the variables.
X=[x y z ]=A1B=111[726 213 425 ][10 8 7 ]=111[70+1642 20+821 40+16+35 ]=111[44 33 11 ]=[4 3 1 ]X=\left[ \begin{matrix} x \\\ y \\\ z \\\ \end{matrix} \right]={{A}^{-1}}B=\dfrac{1}{11}\left[ \begin{matrix} 7 & 2 & -6 \\\ -2 & 1 & -3 \\\ -4 & 2 & 5 \\\ \end{matrix} \right]\left[ \begin{matrix} 10 \\\ 8 \\\ 7 \\\ \end{matrix} \right]=\dfrac{1}{11}\left[ \begin{matrix} 70+16-42 \\\ -20+8-21 \\\ -40+16+35 \\\ \end{matrix} \right]=\dfrac{1}{11}\left[ \begin{matrix} 44 \\\ -33 \\\ 11 \\\ \end{matrix} \right]=\left[ \begin{matrix} 4 \\\ -3 \\\ 1 \\\ \end{matrix} \right].
We used row-column multiplication and now we equate corresponding elements to get
x=4,y=3,z=1x=4,y=-3,z=1. This is the solution of the system of equations.

Note: This type of solution is only possible for matrices. If we want to solve in a determinant way then we need to apply the Cramer’s rule. We also need to remember that the inverse will exist for only non-singular matrices, which means the determinant value has to be non-zero.