Solveeit Logo

Question

Question: Using integration, prove that the curves \[{y^2} = 4x\] and \[{x^2} = 4y\] divide the area of the sq...

Using integration, prove that the curves y2=4x{y^2} = 4x and x2=4y{x^2} = 4y divide the area of the square bounded by x=0,x=4,y=0 and y=4x = 0,x = 4,y = 0{\text{ and }}y = 4 into 3 equal parts

Explanation

Solution

Draw the y2=4x{y^2} = 4x,x2=4x{x^2} = 4x graph and the square bounded by the 44 lines to get a visual image for reference. You will realise that the two curves divide the square into 33 regions. You need to prove that each of these regions is13rd\dfrac{1}{3}{\text{rd}} of the area of the square. Integrate the area enclosed thex2=4y{x^2} = 4ycurve against the xx-axis and the area enclosed by the y2=4x{y^2} = 4xcurve against the yy-axis separately. Also calculate the area of the square.
Given: We are given the curve y2=4x{y^2} = 4x and curve x2=4y{x^2} = 4y
And the equations x=0x = 0,x=4x = 4,y=0y = 0and y=4y = 4that intersect to form a square.

Complete step by step answer:
To prove that the area of the square is divided into 33 parts by the curves.
That is, to prove that

ar DABP = ar DPBQ = ar DQBC = 13arABCD ar ABCD = 4×4=16  {\text{ar DABP = ar DPBQ = ar DQBC = }}\dfrac{1}{3}{\text{arABCD}} \\\ {\text{ar ABCD = 4}} \times 4 = 16 \\\

13ar ABCD = 163=5.33            (i)\therefore \dfrac{1}{3}{\text{ar ABCD = }}\dfrac{{16}}{3} = 5.33\;\;\;\;\;\; \ldots \left( i \right)
ar DABPar{\text{ DABP}} is the area enclosed by the curve x2=4y{x^2} = 4y on the xx-axis starting from x=0x = 0to x=4x = 4.
Similarly, ar DQBCar{\text{ DQBC}} is the area enclosed by the curve y2=4x{y^2} = 4x on the yy-axis starting from y=0y = 0 and y=4y = 4.
To calculate ar DQBC{\text{ar DQBC}},
ar DQBC = 04ydx{\text{ar DQBC = }}_0^4\smallint ydx [because area in on x-axis is]

x2=4y y=x24 ar DQBC = 04x24dx =14[x33]04  {x^2} = 4y \\\ \Rightarrow y = \dfrac{{{x^2}}}{4} \\\ \therefore {\text{ar DQBC = }}_0^4\smallint \dfrac{{{x^2}}}{4}dx \\\ = \dfrac{1}{4}\left[ {\dfrac{{{x^3}}}{3}} \right]_0^4 \\\

=112(43)=163              (ii) = \dfrac{1}{{12}}\left( {{4^3}} \right) = \dfrac{{16}}{3}\;\;\;\;\;\;\; \ldots \left( {ii} \right)
From (i)\left( i \right) and (ii)\left( {ii} \right) we get
ar DQBC = 13ar ABCD{\text{ar DQBC = }}\dfrac{1}{3}{\text{ar ABCD}}
To calculate ar DABP{\text{ar DABP}},

ar DABP = 04xdy y2=4x x=y24 ar DABP = 04dy  = 14[y33]04  {\text{ar DABP = }}_0^4\smallint x{\text{dy}} \\\ {{\text{y}}^2} = 4x \\\ \Rightarrow x = \dfrac{{{y^2}}}{4} \\\ \therefore {\text{ar DABP = }}_0^4\smallint {\text{dy}} \\\ {\text{ = }}\dfrac{1}{4}\left[ {\dfrac{{{y^3}}}{3}} \right]_0^4 \\\

=112(43)=163            (iii) = \dfrac{1}{{12}}\left( {{4^3}} \right) = \dfrac{{16}}{3}\;\;\;\;\;\; \ldots \left( {iii} \right)
From (i)\left( i \right) and (iii)\left( {iii} \right) we get,
ar DABP = 13ar ABCD{\text{ar DABP = }}\dfrac{1}{3}{\text{ar ABCD}}
ar DQBC + ar DABP + ar DPBQ = ar ABCD{\text{ar DQBC + ar DABP + ar DPBQ = ar ABCD}} [from (i)\left( i \right)]
13ar ABCD + 13ar ABCD + ar DPBQ = ar ABCD\Rightarrow \dfrac{1}{3}{\text{ar ABCD + }}\dfrac{1}{3}{\text{ar ABCD + ar DPBQ = ar ABCD}}
ar DPBQ = 13ar ABCD                (iv)\Rightarrow {\text{ar DPBQ = }}\dfrac{1}{3}{\text{ar ABCD}}\;\;\;\;\;\;\;\; \ldots \left( {iv} \right)
From(ii)\left( {ii} \right) , (iii)\left( {iii} \right) and (iv)\left( {iv} \right) we get
ar DABP = ar DPBQ = ar DQBC = 13ABCD{\text{ar DABP = ar DPBQ = ar DQBC = }}\dfrac{1}{3}{\text{ABCD}}.

Note:
You can calculate ar DPBQ{\text{ar DPBQ}}by integrating the region DPBC {\text{DPBC }}and subtractingar DQBC{\text{ar DQBC}} from it. However, it is evident from the diagram that the curves x2=4y{x^2} = 4y and y2=4x{y^2} = 4x divide the square into 33 regions. So, it is sufficient to prove that ar DABP = ar DQBC = 13ABCD{\text{ar DABP = ar DQBC = }}\dfrac{1}{3}{\text{ABCD}} as it follows trivially that ar DPBQ{\text{ar DPBQ}}must be ar ABCD - ar DABP = ar DQBC = 13ar ABCD{\text{ar ABCD - ar DABP = ar DQBC = }}\dfrac{1}{3}{\text{ar ABCD}}. The best way to solve coordinate geometry questions is to make a diagram and visualise areas from it.